17. 如图,四边形ABCD是平行四边形,DE//BF,且分别交对角线AC于点E,F,连接BE,DF.
(1)求证:AE = CF;(4分)
(2)若BE = DE,求证:四边形EBFD为菱形.(4分)

(1)求证:AE = CF;(4分)
(2)若BE = DE,求证:四边形EBFD为菱形.(4分)
答案:
证明:
(1)
∵四边形ABCD是平行四边形,
∴AD = CB,AD//CB,
∴∠DAE = ∠BCF.
∵DE//BF,
∴∠DEF = ∠BFE,
∴∠AED = ∠CFB. 在△ADE和△CBF中,{∠DAE = ∠BCF,∠AED = ∠CFB,AD = CB},
∴△ADE≌△CBF(AAS).
∴AE = CF.
(2)由
(1)知△ADE≌△CBF,则DE = BF. 又
∵DE//BF,
∴四边形EBFD是平行四边形.
∵BE = DE,
∴四边形EBFD为菱形.
(1)
∵四边形ABCD是平行四边形,
∴AD = CB,AD//CB,
∴∠DAE = ∠BCF.
∵DE//BF,
∴∠DEF = ∠BFE,
∴∠AED = ∠CFB. 在△ADE和△CBF中,{∠DAE = ∠BCF,∠AED = ∠CFB,AD = CB},
∴△ADE≌△CBF(AAS).
∴AE = CF.
(2)由
(1)知△ADE≌△CBF,则DE = BF. 又
∵DE//BF,
∴四边形EBFD是平行四边形.
∵BE = DE,
∴四边形EBFD为菱形.
18. 已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,BE//AC,CE//DB,且∠BOC + 2∠OBC = 180°.
(1)求证:四边形ABCD是矩形;(4分)
(2)若∠AOB = 60°,AB = 2,求四边形OBEC的面积.(4分)

(1)求证:四边形ABCD是矩形;(4分)
(2)若∠AOB = 60°,AB = 2,求四边形OBEC的面积.(4分)
答案:
(1)证明:
∵∠BOC + 2∠OBC = 180°,∠BOC + ∠OBC + ∠ACB = 180°,
∴∠OBC = ∠OCB,
∴OB = OC.
∵四边形ABCD是平行四边形,
∴OA = OC,OB = OD,
∴AC = BD,
∴四边形ABCD是矩形.
(2)解:由
(1)可知,OA = OB = OC,四边形ABCD是矩形,
∴∠ABC = 90°.
∵∠AOB = 60°,
∴△OAB是等边三角形,OA = AB = 2,
∴AC = 2OA = 4,
∴BC = √(AC² - AB²)=√(4² - 2²)=2√3.
∵BE//AC,CE//DB,
∴四边形OBEC是平行四边形,
∴S平行四边形OBEC = 2S△OBC = S△ABC = 1/2BC·AB = 1/2×2√3×2 = 2√3.
(1)证明:
∵∠BOC + 2∠OBC = 180°,∠BOC + ∠OBC + ∠ACB = 180°,
∴∠OBC = ∠OCB,
∴OB = OC.
∵四边形ABCD是平行四边形,
∴OA = OC,OB = OD,
∴AC = BD,
∴四边形ABCD是矩形.
(2)解:由
(1)可知,OA = OB = OC,四边形ABCD是矩形,
∴∠ABC = 90°.
∵∠AOB = 60°,
∴△OAB是等边三角形,OA = AB = 2,
∴AC = 2OA = 4,
∴BC = √(AC² - AB²)=√(4² - 2²)=2√3.
∵BE//AC,CE//DB,
∴四边形OBEC是平行四边形,
∴S平行四边形OBEC = 2S△OBC = S△ABC = 1/2BC·AB = 1/2×2√3×2 = 2√3.
19. 如图,在四边形ABCD中,AB = CD,M,N,P,Q分别是AD,BC,BD,AC的中点. 求证:MN与PQ互相垂直平分.

答案:
证明:连接MP,NQ,PN,MQ,
∵M,N,P,Q分别是AD,BC,BD,AC的中点,
∴PM//1/2AB,NQ//1/2AB,
∴PM//NQ,
∴四边形MPNQ为平行四边形. 同理PN//1/2CD,而CD = AB,
∴PN = PM,
∴四边形MPNQ为菱形,
∴MN与PQ互相垂直平分.
∵M,N,P,Q分别是AD,BC,BD,AC的中点,
∴PM//1/2AB,NQ//1/2AB,
∴PM//NQ,
∴四边形MPNQ为平行四边形. 同理PN//1/2CD,而CD = AB,
∴PN = PM,
∴四边形MPNQ为菱形,
∴MN与PQ互相垂直平分.
查看更多完整答案,请扫码查看