20. 如图,已知菱形ABCD,点E、F是对角线BD所在直线上的两点,且∠AED = 45°,DF = BE,连接CE、AF、CF、AE,得四边形AECF.
(1)求证:四边形AECF是正方形;(5分)
(2)若BD = 4,BE = 3,求菱形ABCD的面积.(5分)

(1)求证:四边形AECF是正方形;(5分)
(2)若BD = 4,BE = 3,求菱形ABCD的面积.(5分)
答案:
(1)证明:连接AC,交BD于点O,
∵四边形ABCD是菱形,
∴AO = CO,BO = DO,AC⊥BD.
∵BE = DF,
∴BE + OB = DF + DO,
∴FO = EO,
∴EF与AC垂直且互相平分,
∴四边形AECF是菱形,
∴∠AEF = ∠CEF. 又
∵∠AED = 45°,
∴∠AEC = 90°,
∴四边形AECF是正方形.
(2)解:
∵BD = 4,BE = 3,
∴FD = 3,
∴EF = 10,
∴AC = 10,
∴菱形ABCD的面积 = 1/2AC·BD = 1/2×10×4 = 20.
(1)证明:连接AC,交BD于点O,
∵四边形ABCD是菱形,
∴AO = CO,BO = DO,AC⊥BD.
∵BE = DF,
∴BE + OB = DF + DO,
∴FO = EO,
∴EF与AC垂直且互相平分,
∴四边形AECF是菱形,
∴∠AEF = ∠CEF. 又
∵∠AED = 45°,
∴∠AEC = 90°,
∴四边形AECF是正方形.
(2)解:
∵BD = 4,BE = 3,
∴FD = 3,
∴EF = 10,
∴AC = 10,
∴菱形ABCD的面积 = 1/2AC·BD = 1/2×10×4 = 20.
六(本题满分12分)
21. 如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.
(1)求证:△ABM≌△DCM;(6分)
(2)当AB∶AD的值为多少时,四边形MENF是正方形?请说明理由.(6分)

21. 如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.
(1)求证:△ABM≌△DCM;(6分)
(2)当AB∶AD的值为多少时,四边形MENF是正方形?请说明理由.(6分)
答案:
(1)证明:
∵四边形ABCD是矩形,
∴AB = DC,∠A = ∠D = 90°.
∵M为AD的中点,
∴AM = DM. 在△ABM和△DCM中,{AM = DM,∠A = ∠D,AB = DC},
∴△ABM≌△DCM(SAS).
(2)解:当AB:AD = 1:2时,四边形MENF是正方形. 理由:当AB:AD = 1:2时,AB = 1/2AD = AM,
∴∠AMB = 45°. 同理∠DMC = 45°,
∴∠EMF = 90°.
∵△ABM≌△DCM,
∴BM = CM.
∵点N,E,F分别是线段BC,BM,CM的中点,
∴FN//BM,EN//CM;FN = 1/2BM,EN = 1/2CM.
∴四边形MENF是平行四边形,FN = EN,
∴四边形MENF是菱形.
∵∠EMF = 90°,
∴四边形MENF是正方形.
(1)证明:
∵四边形ABCD是矩形,
∴AB = DC,∠A = ∠D = 90°.
∵M为AD的中点,
∴AM = DM. 在△ABM和△DCM中,{AM = DM,∠A = ∠D,AB = DC},
∴△ABM≌△DCM(SAS).
(2)解:当AB:AD = 1:2时,四边形MENF是正方形. 理由:当AB:AD = 1:2时,AB = 1/2AD = AM,
∴∠AMB = 45°. 同理∠DMC = 45°,
∴∠EMF = 90°.
∵△ABM≌△DCM,
∴BM = CM.
∵点N,E,F分别是线段BC,BM,CM的中点,
∴FN//BM,EN//CM;FN = 1/2BM,EN = 1/2CM.
∴四边形MENF是平行四边形,FN = EN,
∴四边形MENF是菱形.
∵∠EMF = 90°,
∴四边形MENF是正方形.
查看更多完整答案,请扫码查看