2025年阳光课堂金牌练习册九年级数学下册人教版福建专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年阳光课堂金牌练习册九年级数学下册人教版福建专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年阳光课堂金牌练习册九年级数学下册人教版福建专版》

5. 根据预习内容,回答下列问题.
计算:(1)$\sin 45^{\circ}\cos 45^{\circ}$;
(2)$\tan 30^{\circ}\sin 60^{\circ}\times6$.
答案: (1)
$\sin 45^{\circ}\cos 45^{\circ}$=1/2
(2)$\tan 30^{\circ}\sin 60^{\circ}\times6$=3.
例1 求下列各式的值:
(1)$(\cos 30^{\circ}+\sin 45^{\circ})(\sin 60^{\circ}-\cos 45^{\circ})$;
(2)$\frac{4\cos 60^{\circ}-\tan 45^{\circ}}{\tan 60^{\circ}-2\tan 45^{\circ}}$.
答案: 解:(1)原式$=(\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2})\times(\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2})$
$=(\frac{\sqrt{3}}{2})^{2}-(\frac{\sqrt{2}}{2})^{2}=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}$
(2)原式$=\frac{4\times\frac{1}{2}-1}{\sqrt{3}-2\times1}=\frac{1}{\sqrt{3}-2}=-2-\sqrt{3}$.

例2 在$\triangle ABC$中,若$\vert 2\sin^{2}A - 1\vert+\sqrt{3}(\tan C-\sqrt{3})^{2}=0$,求$\angle B$的度数.
答案: 解:由题意,得
$2\sin^{2}A - 1 = 0$$\tan C-\sqrt{3}=0$
$\therefore\sin A=\frac{\sqrt{2}}{2}$(负值舍去),$\tan C=\sqrt{3}$
$\therefore\angle A = 45^{\circ}$$\angle C = 60^{\circ}$.
$\angle A+\angle B+\angle C = 180^{\circ}$$\therefore\angle B = 75^{\circ}$.


例3 如图28-1-22所示,在$Rt\triangle ABC$中,$\angle C = 90^{\circ}$,$\sin B=\frac{3}{5}$,点$D$在$BC$边上,且$\angle ADC = 45^{\circ}$,$CD = 6$,求$\angle BAD$的正切值.

答案: 解:过点$D$$DE\perp AB$于点$E$.
$Rt\triangle ADC$中,$\angle C = 90^{\circ}$$\angle ADC = 45^{\circ}$
$\therefore AC = CD = 6$.
$\sin B=\frac{AC}{AB}=\frac{3}{5}$$\therefore AB = 10$
$\therefore BC=\sqrt{AB^{2}-AC^{2}}=\sqrt{10^{2}-6^{2}} = 8$
$\therefore BD = BC - CD = 2$.
$\sin B=\frac{DE}{BD}=\frac{3}{5}$$\therefore DE=\frac{6}{5}$
$\therefore BE=\sqrt{BD^{2}-DE^{2}}=\frac{8}{5}$
$\therefore AE = AB - BE = 10-\frac{8}{5}=\frac{42}{5}$.
$Rt\triangle AED$中,$\angle AED = 90^{\circ}$
$\therefore\tan\angle BAD=\frac{DE}{AE}=\frac{\frac{6}{5}}{\frac{42}{5}}=\frac{1}{7}$.

查看更多完整答案,请扫码查看

关闭