2025年高考领航高中同步测试卷高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年高考领航高中同步测试卷高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第5页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
1. 若等差数列$\{ a_{n}\}$满足$a_{1}+a_{3}=4,a_{5}+a_{7}=-4$,则等差数列$\{ a_{n}\}$的公差$d =$(
A.2
B.1
C.0
D.$-1$
D
)A.2
B.1
C.0
D.$-1$
答案:
1.D $(a_5 + a_7) - (a_1 + a_3) = (a_1 + a_3 + 8d) - (a_1 + a_3) = 8d = -8$,$\therefore d = -1$. 故选 D.
2. 记等差数列的前$n$项和为$S_{n}$,若$S_{2}=4,S_{4}=20$,则该数列的公差$d$等于(
A.2
B.3
C.6
D.7
B
)A.2
B.3
C.6
D.7
答案:
2.B 方法一:由$\begin{cases} S_2 = 2a_1 + d = 4, \\ S_4 = 4a_1 + 6d = 20, \end{cases}$
解得$d = 3$.
方法二:由$S_4 - S_2 = a_3 + a_4 = a_1 + 2d + a_2 + 2d = S_2 + 4d$,
所以$20 - 4 = 4 + 4d$, 解得$d = 3$.
解得$d = 3$.
方法二:由$S_4 - S_2 = a_3 + a_4 = a_1 + 2d + a_2 + 2d = S_2 + 4d$,
所以$20 - 4 = 4 + 4d$, 解得$d = 3$.
3. 在等差数列$\{ a_{n}\}$中,$a_{10}=30,a_{20}=50$,则$a_{40}=$(
A.40
B.70
C.80
D.90
D
)A.40
B.70
C.80
D.90
答案:
3.D 由等差数列的性质可知,在等差数列中,项数间隔相等的项也成等差数列. 由$a_{10} = 30$,$a_{20} = 50$, 得$a_{30} = 70$,$a_{40} = 90$. 故选 D.
4. 已知等差数列$\{ a_{n}\}$的前$n$项和为$S_{n}$.若$a_{3}+a_{4}+a_{11}=18$,则$S_{11}=$(
A.9
B.22
C.36
D.66
D
)A.9
B.22
C.36
D.66
答案:
4.D 方法一:设数列$\{ a_n \}$的公差为$d$. $\because a_3 + a_4 + a_{11} = 18$, $\therefore$可得$3a_1 + 15d = 18$, 即$a_1 + 5d = 6$,
$\therefore S_{11} = \frac{11(a_1 + a_{11})}{2} = \frac{11(2a_1 + 10d)}{2} = 11(a_1 + 5d) = 11 × 6 = 66$. 故选 D.
方法二:由题意知,$a_3 + a_4 + a_{11} = a_1 + a_6 + a_{11} = 3a_6 = 18$,$\therefore a_6 = 6$,
$\therefore S_{11} = \frac{11(a_1 + a_{11})}{2} = 11a_6 = 11 × 6 = 66$.
$\therefore S_{11} = \frac{11(a_1 + a_{11})}{2} = \frac{11(2a_1 + 10d)}{2} = 11(a_1 + 5d) = 11 × 6 = 66$. 故选 D.
方法二:由题意知,$a_3 + a_4 + a_{11} = a_1 + a_6 + a_{11} = 3a_6 = 18$,$\therefore a_6 = 6$,
$\therefore S_{11} = \frac{11(a_1 + a_{11})}{2} = 11a_6 = 11 × 6 = 66$.
5. 在等差数列$\{ a_{n}\}$中,$S_{n}$是其前$n$项和,且$S_{2012}=S_{2021},S_{k}=S_{2008}$,则正整数$k$为(
A.2023
B.2024
C.2025
D.2026
C
)A.2023
B.2024
C.2025
D.2026
答案:
5.C 因为等差数列的前$n$项和$S_n$是关于$n$的二次函数,所以由二次函数图象的对称性及$S_{2012} = S_{2021}$,$S_k = S_{2008}$, 可得$\frac{2012 + 2021}{2} = \frac{2008 + k}{2}$
解得$k = 2025$, 故选 C.
解得$k = 2025$, 故选 C.
6. 已知数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且$a_{n+1}=a_{n}+2,S_{5}=-35$,则当$S_{n}$取得最小值时,$n$的值是(
A.6
B.7
C.8
D.9
A
)A.6
B.7
C.8
D.9
答案:
6.A $\because$数列$\{ a_n \}$的前$n$项和为$S_n$,且$a_{n + 1} = a_n + 2$,$S_5 = -35$,$\therefore$数列$\{ a_n \}$是等差数列,公差$d = a_{n + 1} - a_n = 2$,$5a_1 + 10d = -35$, 解得$a_1 = -11$.
$\therefore S_n = -11n + \frac{n(n - 1)}{2} × 2 = n^2 - 12n = (n - 6)^2 - 36$,$\therefore$当$S_n$取得最小值时,$n$的值是 6. 故选 A.
$\therefore S_n = -11n + \frac{n(n - 1)}{2} × 2 = n^2 - 12n = (n - 6)^2 - 36$,$\therefore$当$S_n$取得最小值时,$n$的值是 6. 故选 A.
7. 已知数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且$a_{n+2}+a_{n}-2a_{n+1}=0(n\in \mathbf{N}^{*})$.若$a_{16}+a_{18}+a_{20}=24$,则$S_{35}=$(
A.140
B.280
C.70
D.420
B
)A.140
B.280
C.70
D.420
答案:
7.B $\because a_{n + 2} + a_n - 2a_{n + 1} = 0(n \in \mathbf{N}^*)$,
$\therefore 2a_{n + 1} = a_n + a_{n + 2}$,$\therefore$数列$\{ a_n \}$为等差数列. 由等差数列性质得$a_{16} + a_{20} = a_1 + a_{35} = 2a_{18}$, 而$a_{16} + a_{18} + a_{20} = 24$,$\therefore a_{18} = 8$,$\therefore S_{35} = \frac{a_1 + a_{35}}{2} × 35 = 35a_{18} = 35 × 8 = 280$. 故选 B.
$\therefore 2a_{n + 1} = a_n + a_{n + 2}$,$\therefore$数列$\{ a_n \}$为等差数列. 由等差数列性质得$a_{16} + a_{20} = a_1 + a_{35} = 2a_{18}$, 而$a_{16} + a_{18} + a_{20} = 24$,$\therefore a_{18} = 8$,$\therefore S_{35} = \frac{a_1 + a_{35}}{2} × 35 = 35a_{18} = 35 × 8 = 280$. 故选 B.
8. 《周髀算经》中有这样一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列.若冬至、立春、春分的日影长的和为 37.5 尺,芒种的日影长为 4.5 尺,则冬至的日影长为(
A.4 尺
B.8.5 尺
C.12.5 尺
D.15.5 尺
D
)A.4 尺
B.8.5 尺
C.12.5 尺
D.15.5 尺
答案:
8.D 因为从冬至之日起,小寒、大寒、立春、雨水、惊蛰、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列,所以记该等差数列为$\{ a_n \}$, 设其公差为$d$.
因为冬至、立春、春分的日影长的和为 37.5 尺,芒种的日影长为 4.5 尺,
所以$\begin{cases} a_1 + a_4 + a_7 = 37.5, \\ a_{12} = 4.5, \end{cases}$即$\begin{cases} 3a_4 = 37.5, \\ a_{12} = 4.5, \end{cases}$
即$\begin{cases} a_4 = 12.5, \\ a_{12} = 4.5, \end{cases}$则$8d = a_{12} - a_4 = -8$, 所以$d = -1$,
因此$a_1 = a_{12} - 11d = 4.5 + 11 = 15.5$.
故选 D.
因为冬至、立春、春分的日影长的和为 37.5 尺,芒种的日影长为 4.5 尺,
所以$\begin{cases} a_1 + a_4 + a_7 = 37.5, \\ a_{12} = 4.5, \end{cases}$即$\begin{cases} 3a_4 = 37.5, \\ a_{12} = 4.5, \end{cases}$
即$\begin{cases} a_4 = 12.5, \\ a_{12} = 4.5, \end{cases}$则$8d = a_{12} - a_4 = -8$, 所以$d = -1$,
因此$a_1 = a_{12} - 11d = 4.5 + 11 = 15.5$.
故选 D.
9. 数列$\{ a_{n}\}$是首项为 1,公差为$d(d\in \mathbf{N}^{*})$的等差数列.若 81 是该数列中的一项,则公差可能是(
A.2
B.3
C.4
D.5
ACD
)A.2
B.3
C.4
D.5
答案:
9.ACD $\because$数列$\{ a_n \}$是首项为 1, 公差为$d(d \in \mathbf{N}^*)$的等差数列,$\therefore a_n = 1 + (n - 1)d$. $\because 81$是该数列中的一项,$\therefore 81 = 1 + (n - 1)d$,$\therefore n = \frac{80}{d} + 1$.
$\because d,n \in \mathbf{N}^*$,$\therefore d$是 80 的因数,故$d$可能是 2, 4,5, 不可能是 3. 故选 ACD.
$\because d,n \in \mathbf{N}^*$,$\therefore d$是 80 的因数,故$d$可能是 2, 4,5, 不可能是 3. 故选 ACD.
10. 设数列$\{ a_{n}\}$是等差数列,公差为$d,S_{n}$是其前$n$项和,$a_{1}>0$且$S_{6}=S_{9}$,则(
A.$d>0$
B.$a_{8}=0$
C.$S_{7}$或$S_{8}$为$S_{n}$的最大值
D.$S_{5}>S_{6}$
BC
)A.$d>0$
B.$a_{8}=0$
C.$S_{7}$或$S_{8}$为$S_{n}$的最大值
D.$S_{5}>S_{6}$
答案:
10.BC 由$S_6 = S_9$得,$S_9 - S_6 = 0$, 即$a_7 + a_8 + a_9 = 0$, 又$a_7 + a_9 = 2a_8$,$\therefore 3a_8 = 0$,$\therefore a_8 = 0$,$\therefore$B 正确;
由$a_8 = a_1 + 7d = 0$, 得$d = - \frac{a_1}{7}$, 又$a_1 > 0$,$\therefore d < 0$,$\therefore$数列$\{ a_n \}$是单调递减的等差数列,
$\therefore \begin{cases} a_n > 0(n \in \mathbf{N}^*, n \leq 7), \\ a_n < 0(n \in \mathbf{N}^*, n \geq 9), \end{cases} \therefore S_7$或$S_8$为$S_n$的最大值,
$\therefore$A 错误,C 正确;
$\because S_6 - S_5 = a_6 > 0$,$\therefore S_6 > S_5$,$\therefore$D 错误. 故选 BC.
由$a_8 = a_1 + 7d = 0$, 得$d = - \frac{a_1}{7}$, 又$a_1 > 0$,$\therefore d < 0$,$\therefore$数列$\{ a_n \}$是单调递减的等差数列,
$\therefore \begin{cases} a_n > 0(n \in \mathbf{N}^*, n \leq 7), \\ a_n < 0(n \in \mathbf{N}^*, n \geq 9), \end{cases} \therefore S_7$或$S_8$为$S_n$的最大值,
$\therefore$A 错误,C 正确;
$\because S_6 - S_5 = a_6 > 0$,$\therefore S_6 > S_5$,$\therefore$D 错误. 故选 BC.
查看更多完整答案,请扫码查看