2025年新课程学习与检测八年级数学上册
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新课程学习与检测八年级数学上册 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第2页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
5. 如图所示,在$\triangle ABC$中,$AB = AC$,$AD\perp BC$,且$BC = 6$,$AC = 5$,则$AD$的长为(

A.1
B.2
C.3
D.4
D
)A.1
B.2
C.3
D.4
答案:
5.D
6. 如图所示,阴影部分是一个正方形,如果正方形的面积为$64\mathrm{\ cm}^{2}$,则$x$的值为

17
.
答案:
6.17
7. 如图所示,在$\mathrm{Rt}\triangle ABC$中,$\angle ACB = 90^{\circ}$,$CD\perp AB$,$BC = 6$,$AC = 8$,求$AB$,$CD$的长.

答案:
7.解:在Rt△ABC中,
∵BC=6,AC=8,
∴$AB^{2}=BC^{2}+AC^{2}=6^{2}+8^{2}=10^{2},$
解得AB=10.
∵$S_{△ABC}=\frac{1}{2}×6×8=\frac{1}{2}×10× CD,$
∴$CD=\frac{24}{5}.$
故AB的长是10,CD的长是$\frac{24}{5}.$
∵BC=6,AC=8,
∴$AB^{2}=BC^{2}+AC^{2}=6^{2}+8^{2}=10^{2},$
解得AB=10.
∵$S_{△ABC}=\frac{1}{2}×6×8=\frac{1}{2}×10× CD,$
∴$CD=\frac{24}{5}.$
故AB的长是10,CD的长是$\frac{24}{5}.$
8. 如图所示,在$\mathrm{Rt}\triangle ABC$中,分别以这个三角形的三边为边长向外侧作正方形,面积分别记为$S_{1}$,$S_{2}$,$S_{3}$.若$S_{3} + S_{2}-S_{1} = 18$,则图中阴影部分的面积为(

A.6
B.$\frac{9}{2}$
C.5
D.$\frac{7}{2}$
B
)A.6
B.$\frac{9}{2}$
C.5
D.$\frac{7}{2}$
答案:
8.B
9. 如图所示,图中所有的三角形都是直角三角形,四边形都是正方形.已知正方形$A$,$B$,$C$,$D$的面积分别是12,16,9,12,则最大的正方形$E$的面积是(

A.7
B.49
C.25
D.625
B
)A.7
B.49
C.25
D.625
答案:
9.B
10. 如图所示,在$\mathrm{Rt}\triangle ABC$中,$\angle ACB = 90^{\circ}$,$AC = 4$,$BC = 3$,分别以各边为直径作半圆,则图中阴影部分的面积为(

A.6
B.$\frac{25}{4}$
C.$4\pi - 6$
D.$\frac{25}{12}\pi$
A
)A.6
B.$\frac{25}{4}$
C.$4\pi - 6$
D.$\frac{25}{12}\pi$
答案:
10.A
11. 如图所示,在$\mathrm{Rt}\triangle ABC$中,$AC = 6$,$BC = 8$,则其内部5个小直角三角形的周长之和为

24
.
答案:
11.24
查看更多完整答案,请扫码查看