第34页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
1. 一般地,用
数值
代替代数式中的字母
,按照代数式中的运算关系计算得出的结果,叫作代数式的值.
答案:
数值 字母
2. 当 $ x = - 3 $ 时,代数式 $ 2x + 5 $ 的值是(
A.$-7$
B.$-2$
C.$-1$
D.$11$
C
)A.$-7$
B.$-2$
C.$-1$
D.$11$
答案:
C
3. 若 $ x = - 6 $,则代数式 $ x^{2}+6x - 3 $ 的值是(
A.$-51$
B.$-75$
C.$-27$
D.$-3$
D
)A.$-51$
B.$-75$
C.$-27$
D.$-3$
答案:
D
4. 若代数式 $ x - 2y + 8 $ 的值为 $ 18 $,则代数式 $ x - 2y + 4 $ 的值为
14
.
答案:
14
5. (教材 P82 习题 T3 变式)根据下列 $ a $,$ b $ 的值,求代数式 $ 3a^{2}-4b $ 的值:
(1)$ a = 2 $,$ b = - 3 $;(2)$ a = - \frac{1}{2} $,$ b = \frac{1}{3} $.
(1)$ a = 2 $,$ b = - 3 $;(2)$ a = - \frac{1}{2} $,$ b = \frac{1}{3} $.
答案:
解:
(1)当a=2,b=-3时,3a²-4b=3×2²-4×(-3)=12+12=24.
(2)当a=-$\frac{1}{2}$,b=$\frac{1}{3}$时,3a²-4b=3×$(-\frac{1}{2})$²-4×$\frac{1}{3}$=$\frac{3}{4}$-$\frac{4}{3}$=-$\frac{7}{12}$.
(1)当a=2,b=-3时,3a²-4b=3×2²-4×(-3)=12+12=24.
(2)当a=-$\frac{1}{2}$,b=$\frac{1}{3}$时,3a²-4b=3×$(-\frac{1}{2})$²-4×$\frac{1}{3}$=$\frac{3}{4}$-$\frac{4}{3}$=-$\frac{7}{12}$.
6. 已知 $ a $,$ b $ 互为相反数,$ c $,$ d $ 互为倒数,则代数式 $ 2(a + b)-3cd $ 的值为(
A.$2$
B.$-3$
C.$-1$
D.$0$
B
)A.$2$
B.$-3$
C.$-1$
D.$0$
答案:
B
7. 若多项式 $ 2a^{2}-a + 6 $ 的值为 $ 8 $,则多项式 $ 10 + 2a - 4a^{2} $ 的值为(
A.$14$
B.$12$
C.$6$
D.$-6$
C
)A.$14$
B.$12$
C.$6$
D.$-6$
答案:
解析:选 C. 因为多项式2a²-a+6的值为8,所以2a²-a+6=8,所以2a²-a=2,所以10+2a-4a²=10-2(2a²-a)=10-2×2=6. 故选 C.
8. 如图是计算机某计算程序,若开始输入 $ x = 3 $,则最后输出的结果是(

A.$10$
B.$12$
C.$38$
D.$42$
C
)A.$10$
B.$12$
C.$38$
D.$42$
答案:
C
9. 如果 $ | a | = 2 $,$ | b | = 3 $,且 $ | a - b | = b - a $,那么 $ a - b = $
-1 或-5
.
答案:
-1 或-5
10. 从甲城到乙城的公路长 $ a $ 千米,一辆汽车从甲城出发,以每小时 $ m $ 千米的速度开往乙城,用含有字母的式子表示:$ 0.9 $ 小时后汽车已经行驶了
0.9m
千米,此时离乙城还有(a-0.9m)
千米;当 $ a = 120 $,$ m = 60 $ 时,汽车已经行驶了54
千米,此时离乙城还有66
千米.
答案:
0.9m (a-0.9m) 54 66
11. 在某公园内,牡丹按正方形形状种植,芍药种植在它的周围,下图反映了牡丹的列数($ n $)和芍药的数量规律,那么当 $ n = 100 $ 时,芍药的数量为

800
株.
答案:
解析:由图可得,当n=1时,芍药的数量为4+1×4=8(株);当n=2时,芍药的数量为4+3×4=16(株);当n=3时,芍药的数量为4+5×4=24(株);当n=4时,芍药的数量为4+7×4=32(株);……故芍药的数量为4+(2n-1)×4=4+8n-4=8n(株),所以当n=100时,芍药的数量为8×100=800(株).答案:800
查看更多完整答案,请扫码查看