第27页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
5. 计算:$99\dfrac{71}{72}× (-36)$.
答案:
解:原式=(100-$\frac{1}{72}$)×(-36)
=100×(-36)-$\frac{1}{72}$×(-36)
=-3 600+$\frac{1}{2}$=-3 599$\frac{1}{2}$.
=100×(-36)-$\frac{1}{72}$×(-36)
=-3 600+$\frac{1}{2}$=-3 599$\frac{1}{2}$.
6. 计算:$-2025\dfrac{1}{4}-2026\dfrac{2}{5}+4047\dfrac{2}{5}-1\dfrac{1}{2}$.
答案:
解:原式=
[-2 025+(-$\frac{1}{4}$)]+[-2 026+(-$\frac{2}{5}$)]+(4 047+$\frac{2}{5}$)+[-1+(-$\frac{1}{2}$)]
=[-2 025+(-2 026)+4 047+(-1)]+[(-$\frac{1}{4}$)+(-$\frac{2}{5}$)+$\frac{2}{5}$+(-$\frac{1}{2}$)]
=-5+(-$\frac{3}{4}$)=-5$\frac{3}{4}$.
[-2 025+(-$\frac{1}{4}$)]+[-2 026+(-$\frac{2}{5}$)]+(4 047+$\frac{2}{5}$)+[-1+(-$\frac{1}{2}$)]
=[-2 025+(-2 026)+4 047+(-1)]+[(-$\frac{1}{4}$)+(-$\frac{2}{5}$)+$\frac{2}{5}$+(-$\frac{1}{2}$)]
=-5+(-$\frac{3}{4}$)=-5$\frac{3}{4}$.
7. 观察下面的变化规律:
$\dfrac{1}{1× 2}= 1-\dfrac{1}{2}$;$\dfrac{1}{2× 3}= \dfrac{1}{2}-\dfrac{1}{3}$;
$\dfrac{1}{3× 4}= \dfrac{1}{3}-\dfrac{1}{4}$;$\dfrac{1}{4× 5}= \dfrac{1}{4}-\dfrac{1}{5}$;
……
根据上面的规律,请你完成下列各题:
(1)$\dfrac{1}{2025× 2026}=$
(2)计算:$\dfrac{1}{1× 2}+\dfrac{1}{2× 3}+\dfrac{1}{3× 4}+… +\dfrac{1}{9× 10}$;
$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{9×10}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{9}-\frac{1}{10}$
$=1-\frac{1}{10}=\frac{9}{10}$.
(3)计算:$\dfrac{1}{1× 3}+\dfrac{1}{3× 5}+\dfrac{1}{5× 7}+… +\dfrac{1}{2023× 2025}$.
$\frac{1}{1×3}+\frac{1}{3×5}+\frac{1}{5×7}+…+\frac{1}{2023×2025}$
$=\frac{1}{2}×(1-\frac{1}{3})+\frac{1}{2}×(\frac{1}{3}-\frac{1}{5})+\frac{1}{2}×(\frac{1}{5}-\frac{1}{7})+…+\frac{1}{2}×(\frac{1}{2023}-\frac{1}{2025})$
$=\frac{1}{2}×[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+…+(\frac{1}{2023}-\frac{1}{2025})]$
$=\frac{1}{2}×(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2023}-\frac{1}{2025})$
$=\frac{1}{2}×(1-\frac{1}{2025})$
$=\frac{1}{2}×\frac{2024}{2025}=\frac{1012}{2025}$.
$\dfrac{1}{1× 2}= 1-\dfrac{1}{2}$;$\dfrac{1}{2× 3}= \dfrac{1}{2}-\dfrac{1}{3}$;
$\dfrac{1}{3× 4}= \dfrac{1}{3}-\dfrac{1}{4}$;$\dfrac{1}{4× 5}= \dfrac{1}{4}-\dfrac{1}{5}$;
……
根据上面的规律,请你完成下列各题:
(1)$\dfrac{1}{2025× 2026}=$
$\frac{1}{2025}-\frac{1}{2026}$
,$\dfrac{1}{n(n+1)}=$$\frac{1}{n}-\frac{1}{n+1}$
;(2)计算:$\dfrac{1}{1× 2}+\dfrac{1}{2× 3}+\dfrac{1}{3× 4}+… +\dfrac{1}{9× 10}$;
$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{9×10}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{9}-\frac{1}{10}$
$=1-\frac{1}{10}=\frac{9}{10}$.
(3)计算:$\dfrac{1}{1× 3}+\dfrac{1}{3× 5}+\dfrac{1}{5× 7}+… +\dfrac{1}{2023× 2025}$.
$\frac{1}{1×3}+\frac{1}{3×5}+\frac{1}{5×7}+…+\frac{1}{2023×2025}$
$=\frac{1}{2}×(1-\frac{1}{3})+\frac{1}{2}×(\frac{1}{3}-\frac{1}{5})+\frac{1}{2}×(\frac{1}{5}-\frac{1}{7})+…+\frac{1}{2}×(\frac{1}{2023}-\frac{1}{2025})$
$=\frac{1}{2}×[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+…+(\frac{1}{2023}-\frac{1}{2025})]$
$=\frac{1}{2}×(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2023}-\frac{1}{2025})$
$=\frac{1}{2}×(1-\frac{1}{2025})$
$=\frac{1}{2}×\frac{2024}{2025}=\frac{1012}{2025}$.
答案:
解:
(1)$\frac{1}{2025}$-$\frac{1}{2026}$ $\frac{1}{n}$-$\frac{1}{n+1}$
(2)$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{9×10}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{9}$-$\frac{1}{10}$
=1-$\frac{1}{10}$=$\frac{9}{10}$.
(3)$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{2023×2025}$
=$\frac{1}{2}$×(1-$\frac{1}{3}$)+$\frac{1}{2}$×($\frac{1}{3}$-$\frac{1}{5}$)+$\frac{1}{2}$×($\frac{1}{5}$-$\frac{1}{7}$)+…+$\frac{1}{2}$×($\frac{1}{2023}$-$\frac{1}{2025}$)
=$\frac{1}{2}$×[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2023}$-$\frac{1}{2025}$)]
=$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2023}$-$\frac{1}{2025}$)
=$\frac{1}{2}$×(1-$\frac{1}{2025}$)
=$\frac{1}{2}$×$\frac{2024}{2025}$=$\frac{1012}{2025}$.
(1)$\frac{1}{2025}$-$\frac{1}{2026}$ $\frac{1}{n}$-$\frac{1}{n+1}$
(2)$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{9×10}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{9}$-$\frac{1}{10}$
=1-$\frac{1}{10}$=$\frac{9}{10}$.
(3)$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{2023×2025}$
=$\frac{1}{2}$×(1-$\frac{1}{3}$)+$\frac{1}{2}$×($\frac{1}{3}$-$\frac{1}{5}$)+$\frac{1}{2}$×($\frac{1}{5}$-$\frac{1}{7}$)+…+$\frac{1}{2}$×($\frac{1}{2023}$-$\frac{1}{2025}$)
=$\frac{1}{2}$×[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2023}$-$\frac{1}{2025}$)]
=$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2023}$-$\frac{1}{2025}$)
=$\frac{1}{2}$×(1-$\frac{1}{2025}$)
=$\frac{1}{2}$×$\frac{2024}{2025}$=$\frac{1012}{2025}$.
查看更多完整答案,请扫码查看