2025年轻松暑假复习加预习中国海洋大学出版社七年级数学鲁教版54制
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年轻松暑假复习加预习中国海洋大学出版社七年级数学鲁教版54制 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第20页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
8.(2022·扬州)将一副直角三角板如图放置,若$EF// BC$,则$∠BND= $

$105^{\circ}$
$^{\circ }$.
答案:
$105^{\circ}$
9.(浙江中考)如图所示,$AB// CD$,EF分别与AB,CD交于点B,F.若$∠E= $$30^{\circ },∠EFC= 130^{\circ }$,则$∠A= $

$20^{\circ}$
.
答案:
$20^{\circ}$
10.如图所示,在$△ABC$中,AD是BC边上的高,AE,BF分别是$∠BAC$和$∠ABC$的角平分线,它们相交于点O,$∠AOB = 125^{\circ }$,求$∠CAD$的度数.
解:$\because \angle AOB = 125^{\circ}$,
$\therefore \angle OAB + \angle OBA =$
$\because AE$,$BF$分别是$\angle BAC$和$\angle ABC$的角平分线,它们相交于点$O$
$\therefore \angle BAC + \angle ABC = 2(\angle OAB + \angle OBA) =$
$\because AD$是$BC$边上的高,
$\therefore \angle ADC =$
$\therefore \angle CAD =$
即$\angle CAD$的度数是
解:$\because \angle AOB = 125^{\circ}$,
$\therefore \angle OAB + \angle OBA =$
$55^{\circ}$
。$\because AE$,$BF$分别是$\angle BAC$和$\angle ABC$的角平分线,它们相交于点$O$
$\therefore \angle BAC + \angle ABC = 2(\angle OAB + \angle OBA) =$
$110^{\circ}$
。$\therefore \angle C =$$70^{\circ}$
。$\because AD$是$BC$边上的高,
$\therefore \angle ADC =$
$90^{\circ}$
。$\therefore \angle CAD =$
$20^{\circ}$
。即$\angle CAD$的度数是
$20^{\circ}$
。
答案:
解:$\because \angle AOB = 125^{\circ}$,
$\therefore \angle OAB + \angle OBA = 55^{\circ}$。
$\because AE$,$BF$分别是$\angle BAC$和$\angle ABC$的角平分线,它们相交于点$O$
$\therefore \angle BAC + \angle ABC = 2(\angle OAB + \angle OBA) = 110^{\circ}$。$\therefore \angle C = 70^{\circ}$。
$\because AD$是$BC$边上的高,
$\therefore \angle ADC = 90^{\circ}$。
$\therefore \angle CAD = 20^{\circ}$。
即$\angle CAD$的度数是$20^{\circ}$。
$\therefore \angle OAB + \angle OBA = 55^{\circ}$。
$\because AE$,$BF$分别是$\angle BAC$和$\angle ABC$的角平分线,它们相交于点$O$
$\therefore \angle BAC + \angle ABC = 2(\angle OAB + \angle OBA) = 110^{\circ}$。$\therefore \angle C = 70^{\circ}$。
$\because AD$是$BC$边上的高,
$\therefore \angle ADC = 90^{\circ}$。
$\therefore \angle CAD = 20^{\circ}$。
即$\angle CAD$的度数是$20^{\circ}$。
11.已知$△ABC$中,$∠B= ∠C$,D为边BC上一点(不与B,C重合),点E为边AC上一点,$∠ADE= $$∠AED,∠BAC= 44^{\circ }.$
(1)求$∠C$的度数;
解:$\because \angle BAC = 44^{\circ}$,
$\therefore \angle B + \angle C = 180^{\circ} - \angle BAC = 180^{\circ} - 44^{\circ} = 136^{\circ}$。
$\because \angle B = \angle C$,
$\therefore 2\angle C = 136^{\circ}$。
$\therefore \angle C =$
(2)若$∠ADE= 75^{\circ }$,求$∠CDE$的度数.
解:$\because \angle ADE = \angle AED$,$\angle ADE = 75^{\circ}$,
$\therefore \angle AED = 75^{\circ}$。
$\because \angle AED + \angle CED = 180^{\circ}$,
$\therefore \angle CED = 180^{\circ} - 75^{\circ} = 105^{\circ}$。
$\because \angle CDE + \angle CED + \angle C = 180^{\circ}$,
$\therefore \angle CDE = 180^{\circ} - 105^{\circ} - 68^{\circ} =$

(1)求$∠C$的度数;
解:$\because \angle BAC = 44^{\circ}$,
$\therefore \angle B + \angle C = 180^{\circ} - \angle BAC = 180^{\circ} - 44^{\circ} = 136^{\circ}$。
$\because \angle B = \angle C$,
$\therefore 2\angle C = 136^{\circ}$。
$\therefore \angle C =$
$68^{\circ}$
。(2)若$∠ADE= 75^{\circ }$,求$∠CDE$的度数.
解:$\because \angle ADE = \angle AED$,$\angle ADE = 75^{\circ}$,
$\therefore \angle AED = 75^{\circ}$。
$\because \angle AED + \angle CED = 180^{\circ}$,
$\therefore \angle CED = 180^{\circ} - 75^{\circ} = 105^{\circ}$。
$\because \angle CDE + \angle CED + \angle C = 180^{\circ}$,
$\therefore \angle CDE = 180^{\circ} - 105^{\circ} - 68^{\circ} =$
$7^{\circ}$
。
答案:
解:
(1)$\because \angle BAC = 44^{\circ}$,
$\therefore \angle B + \angle C = 180^{\circ} - \angle BAC = 180^{\circ} - 44^{\circ} = 136^{\circ}$。
$\because \angle B = \angle C$,
$\therefore 2\angle C = 136^{\circ}$。
$\therefore \angle C = 68^{\circ}$。
(2)$\because \angle ADE = \angle AED$,$\angle ADE = 75^{\circ}$,
$\therefore \angle AED = 75^{\circ}$。
$\because \angle AED + \angle CED = 180^{\circ}$,
$\therefore \angle CED = 180^{\circ} - 75^{\circ} = 105^{\circ}$。
$\because \angle CDE + \angle CED + \angle C = 180^{\circ}$,
$\therefore \angle CDE = 180^{\circ} - 105^{\circ} - 68^{\circ} = 7^{\circ}$。
(1)$\because \angle BAC = 44^{\circ}$,
$\therefore \angle B + \angle C = 180^{\circ} - \angle BAC = 180^{\circ} - 44^{\circ} = 136^{\circ}$。
$\because \angle B = \angle C$,
$\therefore 2\angle C = 136^{\circ}$。
$\therefore \angle C = 68^{\circ}$。
(2)$\because \angle ADE = \angle AED$,$\angle ADE = 75^{\circ}$,
$\therefore \angle AED = 75^{\circ}$。
$\because \angle AED + \angle CED = 180^{\circ}$,
$\therefore \angle CED = 180^{\circ} - 75^{\circ} = 105^{\circ}$。
$\because \angle CDE + \angle CED + \angle C = 180^{\circ}$,
$\therefore \angle CDE = 180^{\circ} - 105^{\circ} - 68^{\circ} = 7^{\circ}$。
12.如图所示,在$△ABC$中,BE平分$∠ABD$,CE平分$∠ACD$,且$∠BEC= $$27^{\circ }$,求$∠BAC$的度数.

解:$\because \angle ABC$与$\angle ACD$的角平分线相交于点$E$,$\therefore \angle CBE =$
由三角形的外角性质得,$\angle ACD = \angle ABC + \angle BAC$,$\angle ECD = \angle BEC + \angle CBE$,
$\therefore \frac{1}{2}\angle ACD = \angle BEC + \frac{1}{2}\angle ABC$。
$\therefore \frac{1}{2}(\angle ABC + \angle BAC) = \angle BEC + \frac{1}{2}\angle ABC$,整理得,$\angle BAC =$
$\because \angle BEC = 27^{\circ}$,
$\therefore \angle BAC =$
解:$\because \angle ABC$与$\angle ACD$的角平分线相交于点$E$,$\therefore \angle CBE =$
$\frac{1}{2}\angle ABC$
,$\angle ECD =$$\frac{1}{2}\angle ACD$
。由三角形的外角性质得,$\angle ACD = \angle ABC + \angle BAC$,$\angle ECD = \angle BEC + \angle CBE$,
$\therefore \frac{1}{2}\angle ACD = \angle BEC + \frac{1}{2}\angle ABC$。
$\therefore \frac{1}{2}(\angle ABC + \angle BAC) = \angle BEC + \frac{1}{2}\angle ABC$,整理得,$\angle BAC =$
$2\angle BEC$
;$\because \angle BEC = 27^{\circ}$,
$\therefore \angle BAC =$
$2× 27^{\circ} = 54^{\circ}$
。
答案:
解:$\because \angle ABC$与$\angle ACD$的角平分线相交于点$E$,$\therefore \angle CBE = \frac{1}{2}\angle ABC$,$\angle ECD = \frac{1}{2}\angle ACD$。
由三角形的外角性质得,$\angle ACD = \angle ABC + \angle BAC$,$\angle ECD = \angle BEC + \angle CBE$,
$\therefore \frac{1}{2}\angle ACD = \angle BEC + \frac{1}{2}\angle ABC$。
$\therefore \frac{1}{2}(\angle ABC + \angle BAC) = \angle BEC + \frac{1}{2}\angle ABC$,整理得,$\angle BAC = 2\angle BEC$;
$\because \angle BEC = 27^{\circ}$,
$\therefore \angle BAC = 2× 27^{\circ} = 54^{\circ}$。
由三角形的外角性质得,$\angle ACD = \angle ABC + \angle BAC$,$\angle ECD = \angle BEC + \angle CBE$,
$\therefore \frac{1}{2}\angle ACD = \angle BEC + \frac{1}{2}\angle ABC$。
$\therefore \frac{1}{2}(\angle ABC + \angle BAC) = \angle BEC + \frac{1}{2}\angle ABC$,整理得,$\angle BAC = 2\angle BEC$;
$\because \angle BEC = 27^{\circ}$,
$\therefore \angle BAC = 2× 27^{\circ} = 54^{\circ}$。
13.(1)如图1所示,AF与EB交于点O,我们将$△EOF与△AOB$称为对顶三角形.求证:$∠A+∠B= ∠E+∠F.$
(2)如图2所示,BE,CD相交于点A,$∠DEA,∠BCA$的平分线交于点F.求证:$∠F= \frac {1}{2}(∠B+∠D).$
(3)在(2)的条件下,$∠B:∠D:$
$∠F= 2:4:x$.求x.

(2)如图2所示,BE,CD相交于点A,$∠DEA,∠BCA$的平分线交于点F.求证:$∠F= \frac {1}{2}(∠B+∠D).$
(3)在(2)的条件下,$∠B:∠D:$
$∠F= 2:4:x$.求x.
答案:
解:
(1)由题意,知$\angle A + \angle B + \angle AOB = 180^{\circ}$,$\angle E + \angle F + \angle EOF = 180^{\circ}$,
$\because \angle AOB = \angle EOF$,
$\therefore \angle A + \angle B = \angle E + \angle F$。
(2)如图所示,由
(1)的结论,得$\angle F + \angle 3 = \angle D + \angle 1$,$\angle F + \angle 2 = \angle B + \angle 4$,
$\therefore 2\angle F + \angle 3 + \angle 2 = \angle D + \angle B + \angle 1 + \angle 4$。
$\because EF$,$CF$平分$\angle DEA$与$\angle BCA$,
$\therefore \angle 1 = \angle 2$,$\angle 3 = \angle 4$。
$\therefore 2\angle F = \angle D + \angle B$。
$\therefore \angle F = \frac{1}{2}(\angle B + \angle D)$。
(3)设$\angle B = 2k(k \neq 0)$,则$\angle D = 4k$,$\angle F = xk$。
由
(2)知$\angle F = \frac{1}{2}(\angle B + \angle D)$,即$xk = \frac{1}{2}(2k + 4k)$,解得$x = 3$。
解:
(1)由题意,知$\angle A + \angle B + \angle AOB = 180^{\circ}$,$\angle E + \angle F + \angle EOF = 180^{\circ}$,
$\because \angle AOB = \angle EOF$,
$\therefore \angle A + \angle B = \angle E + \angle F$。
(2)如图所示,由
(1)的结论,得$\angle F + \angle 3 = \angle D + \angle 1$,$\angle F + \angle 2 = \angle B + \angle 4$,
$\therefore 2\angle F + \angle 3 + \angle 2 = \angle D + \angle B + \angle 1 + \angle 4$。
$\because EF$,$CF$平分$\angle DEA$与$\angle BCA$,
$\therefore \angle 1 = \angle 2$,$\angle 3 = \angle 4$。
$\therefore 2\angle F = \angle D + \angle B$。
$\therefore \angle F = \frac{1}{2}(\angle B + \angle D)$。
(3)设$\angle B = 2k(k \neq 0)$,则$\angle D = 4k$,$\angle F = xk$。
由
(2)知$\angle F = \frac{1}{2}(\angle B + \angle D)$,即$xk = \frac{1}{2}(2k + 4k)$,解得$x = 3$。
查看更多完整答案,请扫码查看