2025年初中必刷题九年级数学上册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年初中必刷题九年级数学上册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年初中必刷题九年级数学上册苏科版》

1[中]如图,四边形ABCD是$\odot O$的内接四边形,$∠B= 90^{\circ },∠A= 60^{\circ },AB= 3,CD= 2$,则AD的长为( )

A.$3\sqrt {3}-4$
B.$2\sqrt {3}$
C.$6-2\sqrt {3}$
D.3
答案:
C 【解析】如图,延长 AB,DC 交于点 E。
∵ 四边形 ABCD 是$\odot O$的内接四边形,$\therefore ∠ABC + ∠D = 180^{\circ}$。$\because ∠ABC = 90^{\circ}$,$\therefore ∠D = 90^{\circ}$,$∠EBC = 90^{\circ}$。$\because ∠A = 60^{\circ}$,$\therefore ∠E = 30^{\circ}$,$\therefore EC = 2BC$,$AE = 2AD$。设$BC = x$,则$EC = 2x$,$BE = \sqrt{3}x$。$\because AB = 3$,$CD = 2$,$\therefore AE = 3 + \sqrt{3}x$,$DE = 2 + 2x$,$\therefore AD = \frac{1}{2}AE = \frac{3 + \sqrt{3}x}{2}$。
∵ 由勾股定理易得$DE = \sqrt{3}AD$,$\therefore 2 + 2x = \sqrt{3}×\frac{3 + \sqrt{3}x}{2}$,解得$x = 3\sqrt{3}-4$,$\therefore AD = \frac{3 + \sqrt{3}×(3\sqrt{3}-4)}{2}= 6 - 2\sqrt{3}$,故选 C。AD
2构造同弧的圆周角[2025浙江杭州质检,中]如图,圆内接$\triangle ABC的外角∠ACH$的平分线与圆交于点D,$DP⊥AC$,垂足为P,$DH⊥BH$,垂足为H.有下列结论:①$\widehat {AD}= \widehat {BD}$;②$AP= BH$;③$\widehat {AB}= \widehat {BC}$.其中一定成立的结论有( )


A.1个
B.2个
C.3个
D.0个
答案:
B 【解析】连接 BD,如图。
∵ CD 平分$∠ACH$,$DP⊥AC$,$DH⊥BH$,$\therefore DP = DH$。
∵$∠DAP$和$∠DBH$是$\widehat{CD}$所对的圆周角,$\therefore ∠DAP = ∠DBH$。在$△ADP$和$△BDH$中,$\begin{cases}∠DAP = ∠DBH\\∠APD = ∠BHD = 90^{\circ}\\DP = DH\end{cases}$,$\therefore △ADP\cong △BDH(AAS)$,$\therefore AD = DB$,$AP = BH$,$\therefore \widehat{AD}=\widehat{BD}$,故①②成立。当且仅当$AB = BC$时,$\widehat{AB}=\widehat{BC}$,故③不一定成立。综上所述,一定成立的结论有 2 个,故选 B。
3连半径,构造圆心角[2025江苏淮安期中,中]如图,四边形ABCD是$\odot O$的内接四边形,AB是$\odot O$的直径,E为$\odot O$上一点,若$∠ADC= 110^{\circ }$,则$∠BEC$的度数为______.

答案:
20°【解析】如图,连接 OC。
∵ 四边形 ABCD 是$\odot O$的内接四边形,$∠ADC = 110^{\circ}$,$\therefore ∠CBO = 180^{\circ}-∠ADC = 180^{\circ}-110^{\circ}= 70^{\circ}$。$\because OB = OC$,$\therefore ∠BCO = ∠CBO = 70^{\circ}$,$\therefore ∠BOC = 180^{\circ}-∠BCO - ∠CBO = 40^{\circ}$,$\therefore ∠BEC = \frac{1}{2}∠BOC = 20^{\circ}$,故答案为$20^{\circ}$。
4构造圆内接四边形[2025黑龙江大庆期末,中]如图,点A,B,C在$\odot O$上,四边形OABC是平行四边形,若对角线$AC= 2\sqrt {3}$,则OA的长为______.

答案:
2 【解析】如图,在优弧 AC 上找一点 M,连接 AM,CM,OB,OB 交 AC 于点 N,则$∠AOC = 2∠AMC$。
∵ 四边形 OABC 是平行四边形,$\therefore ∠ABC = ∠AOC = 2∠AMC$。
∵ 四边形 MABC 是$\odot O$的内接四边形,$\therefore ∠AMC + ∠ABC = 180^{\circ}$,$\therefore ∠AMC + 2∠AMC = 180^{\circ}$,$\therefore ∠AMC = 60^{\circ}$,$\therefore ∠AOC = 120^{\circ}$。
∵ 四边形 OABC 是平行四边形,$AC = 2\sqrt{3}$,$\therefore AN = CN = \frac{1}{2}AC = \frac{1}{2}×2\sqrt{3}=\sqrt{3}$。$\because OA = OC$,
∴ 四边形 OABC 为菱形,$∠OAC = ∠OCA = 30^{\circ}$,$\therefore ∠AOB = ∠COB = 60^{\circ}$,$\therefore ∠ONA = 180^{\circ}-∠AOB - ∠OAC = 90^{\circ}$,$\therefore OA = 2ON$,$\therefore (2ON)^{2}=ON^{2}+(\sqrt{3})^{2}$,$\therefore ON = 1$,$\therefore OA = 2ON = 2$,故答案为 2。AB
5构造直角三角形[2025江苏南京质检,中]如图,$\odot O$的半径为4,$\triangle ABC$的顶点A,B在$\odot O$上,$∠B= 90^{\circ },∠A= 60^{\circ },AC,BC分别与\odot O$交于D,E两点,且$BE= DE$,则$\triangle ABC$的面积为______.

答案:
24√3 【解析】连接 AE,如图。
∵$∠CBA = 90^{\circ}$,点 A,B,E 都在$\odot O$上,
∴ AE 为$\odot O$的直径,$\therefore AE = 8$。$\because BE = DE$,$\therefore \widehat{BE}=\widehat{DE}$,$\therefore ∠BAE = ∠DAE$。$\because ∠BAC = 60^{\circ}$,$\therefore ∠BAE = ∠DAE = 30^{\circ}$,$\therefore BE = DE = \frac{1}{2}AE = 4$,$\therefore AB = \sqrt{AE^{2}-BE^{2}}=\sqrt{8^{2}-4^{2}}= 4\sqrt{3}$。
∵ AE 为直径,$\therefore ∠EDA = ∠EDC = 90^{\circ}$。$\because ∠C = 180^{\circ}-∠ABC - ∠BAC = 180^{\circ}-90^{\circ}-60^{\circ}= 30^{\circ}$,$\therefore EC = 2ED = 8$,$\therefore BC = BE + CE = 12$,$\therefore S_{△ABC}=\frac{1}{2}AB\cdot BC=\frac{1}{2}×4\sqrt{3}×12 = 24\sqrt{3}$。故答案为$24\sqrt{3}$。
6[较难]如图,$\triangle ABC$中,$AD⊥BC,∠B= 45^{\circ },∠C= 30^{\circ }$.以AD为弦的圆分别交AB,AC于E,F两点,连接ED,FD,点G在AC边上,且满足$∠EDG= 120^{\circ }$,连接EG.若$CD= 4+2\sqrt {2}$,则$\triangle DEG$的面积的最小值是______.
答案:
2√2+2 【解析】如图,连接 EF。
∵$AD⊥BC$,$∠B = 45^{\circ}$,$∠C = 30^{\circ}$,$\therefore ∠BAD = 45^{\circ}$,$∠DAC = 60^{\circ}$,$∠BAC = 105^{\circ}$。
∵ A,E,F,D 四点共圆,$\therefore ∠EDF = 75^{\circ}$。$\because ∠EDG = 120^{\circ}$,$\therefore ∠FDG = 45^{\circ}$。$\because \widehat{ED}=\widehat{ED}$,$\therefore ∠EFD = ∠EAD = 45^{\circ}$,$\therefore ∠EFD = ∠FDG$,$\therefore EF// DG$,$\therefore S_{△FDG}=S_{△EDG}$。$\because CD = 4 + 2\sqrt{2}$,$∠C = 30^{\circ}$,$\therefore AC = 2AD$,
∴ 易得$AD = \frac{4\sqrt{3}}{3}+\frac{2\sqrt{6}}{3}$,$AC = \frac{8\sqrt{3}}{3}+\frac{4\sqrt{6}}{3}$,
∴ AC 边上的高为$\frac{AD\cdot DC}{AC}= 2+\sqrt{2}$,
∴ 当 FG 最小时,$△DFG$的面积取得最小值。作$△DFG$的外接圆$\odot O$,过点 O 作$OH⊥FG$于点 H,连接 OF,OG,OD,DH。
∵$∠FDG = 45^{\circ}$,$\therefore ∠FOG = 90^{\circ}$。$\because OF = GO$,
∴$△FOG$是等腰直角三角形,$\therefore ∠FOH = \frac{1}{2}∠FOG = 45^{\circ}$,
∴$△FOH$是等腰直角三角形,$\therefore FH = OH = \frac{1}{2}FG$,$FO = \sqrt{2}FH$,$\therefore DO + OH = \frac{\sqrt{2}}{2}FG+\frac{1}{2}FG=\frac{1+\sqrt{2}}{2}FG$,
∴ 当 DO + OH 最小时,FG 就取得最小值。$\because DO + OH\geq DH$,
∴ 当 D,O,H 三点共线时,DO + OH 最小,此时$DH⊥FG$,$\therefore DH = 2+\sqrt{2}$。$\because DH = 2+\sqrt{2}=FH + FO = FH+\sqrt{2}FH$,$\therefore FH = \sqrt{2}$,
∴ FG 的最小值为$2\sqrt{2}$,此时$S_{△DFG}=\frac{1}{2}×2\sqrt{2}×(2+\sqrt{2})= 2\sqrt{2}+2$,$\therefore △DEG$的面积的最小值为$2\sqrt{2}+2$。故答案为$2\sqrt{2}+2$。D
7核心素养推理能力[2024江苏徐州调研,较难]如图(1),在$\odot O$中,弦AD平分圆周角$∠BAC$,我们将圆中以A为公共点的三条弦BA,CA,DA构成的图形称为“爪形A”,弦BA,CA,DA称为“爪形A”的爪.如图(2),四边形ABCD内接于$\odot O,AB= BC$,连接BD.
(1)证明圆中存在“爪形D”.
(2)若$∠ADC= 120^{\circ }$,求证:$AD+CD= BD$.
(3)如图(3),若$AD⊥DC$,此时“爪形D”的爪之间满足怎样的数量关系,请直接写出结果.

答案:

(1)【证明】$\because AB = BC$,$\therefore ∠ADB = ∠CDB$,
∴ DB 平分圆周角$∠ADC$,
∴ 圆中存在“爪形 D”。
(2)【证明】如图
(1),延长 DC 至点 E,使得$CE = AD$,连接 BE。$\because ∠A + ∠DCB = 180^{\circ}$,$∠ECB + ∠DCB = 180^{\circ}$,$\therefore ∠A = ∠ECB$。$\because CE = AD$,$AB = BC$,$\therefore △BAD\cong △BCE$,$\therefore ∠E = ∠ADB$。$\because ∠ADC = 120^{\circ}$,$\therefore ∠E = ∠ADB = ∠BDC = 60^{\circ}$,$\therefore △BDE$为等边三角形,$\therefore DE = BD$,$\therefore AD + CD = BD$。图1
(3)【解】$AD + CD = \sqrt{2}BD$。如图
(2),延长 DC 至点 E,使得$CE = AD$,连接 BE。同
(2)可得$△BAD\cong △BCE$,$\therefore ∠E = ∠ADB$,$BD = BE$。$\because AD⊥DC$,$\therefore ∠E = ∠ADB = ∠BDE = 45^{\circ}$,$\therefore ∠DBE = 90^{\circ}$,$\therefore △BDE$为等腰直角三角形,$\therefore DE = \sqrt{2}BD$,即$AD + CD = \sqrt{2}BD$。B图2

查看更多完整答案,请扫码查看

关闭