2025年初中必刷题九年级数学上册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年初中必刷题九年级数学上册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年初中必刷题九年级数学上册苏科版》

1 [2024江苏镇江质检]下列命题正确的是(
B
)
A.相等的圆心角所对的弦相等
B.圆既是中心对称图形又是轴对称图形
C.在同圆或等圆中,相等的弦所对的弧相等
D.在同圆中,较长的弧所对的弦较长
答案: B [解析]A选项,同圆或等圆中,相等的圆心角所对的弦相等,故原命题错误,不符合题意;B选项,圆既是中心对称图形又是轴对称图形,正确,符合题意;C选项,同一条弦对应着两条弧,它们不一定相等,故在同圆或等圆中,相等的弦所对的弧不一定相等,故原命题错误,不符合题意;D选项,在同圆中,半圆弧所对的弦最长,其他非半圆弧所对的弦均小于半圆弧所对的弦(直径),故原命题错误,不符合题意.故选B.
2 [2024江苏连云港调研]AB,CD是$\odot O$中的两条弦,若$AB= 2CD$,则$\overset{\frown }{AB}与2\overset{\frown }{CD}$的大小关系是( )

A.$\overset{\frown }{AB}>2\overset{\frown }{CD}$
B.$\overset{\frown }{AB}<2\overset{\frown }{CD}$
C.$\overset{\frown }{AB}= 2\overset{\frown }{CD}$
D.不能确定
答案:
A [解析]如图所示,$CD=DE$,$AB=2CD$。在$\triangle CDE$中,$\because CD=DE$,$\therefore CE\lt CD + DE$,即$CE\lt 2CD = AB$,$\therefore CE\lt AB$,$\therefore \overset{\frown }{AB}>2\overset{\frown }{CD}$。故选A。
3 [2024江西赣州质检]把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则$\overset{\frown }{AC}$的度数是( )


A.$30^{\circ}$
B.$40^{\circ}$
C.$50^{\circ}$
D.$60^{\circ}$
答案:
A [解析]如图,过点O作$OF⊥AB$于点F,交$\odot O$于点E,连接AO。由折叠的性质得到$OF = EF = \frac{1}{2}OE$。$\because OA = OE$,$\therefore OF = \frac{1}{2}OA$,$\therefore ∠OAF = 30^{\circ}$。$\because AB// CD$,$\therefore ∠AOC = 30^{\circ}$,$\therefore \overset{\frown }{AC}$的度数是$30^{\circ}$。故选A。

4 [2024江苏南京期中]在$\odot O$中,弦AB的长恰好等于半径,则弦AB所对圆心角的度数为______.
答案:
$60^{\circ}$ [解析]如图,$\because AB = OA = OB$,$\therefore \triangle AOB$为等边三角形,$\therefore ∠AOB = 60^{\circ}$。故答案为$60^{\circ}$。AB
5 [2024辽宁沈阳质检]如图,AB是圆O的直径,BC,CD,DA是圆O的弦,且$BC= CD= DA$,则$\angle BCD= $______.

答案:
$120^{\circ}$ [解析]如图,连接OC,OD。$\because BC = CD = DA$,$\therefore ∠COB = ∠COD = ∠DOA$。$\because ∠COB + ∠COD + ∠DOA = 180^{\circ}$,$\therefore ∠COB = ∠COD = ∠DOA = 60^{\circ}$。$\because OB = OC = OD$,$\therefore \triangle COD$,$\triangle BOC$是等边三角形,$\therefore ∠OCD = ∠OCB = 60^{\circ}$,$\therefore ∠BCD = ∠OCD + ∠OCB = 120^{\circ}$,故答案为$120^{\circ}$。
6 如图,已知AB是$\odot O$的直径,$PA= PB$,$\angle P= 60^{\circ}$,则弧CD所对的圆心角等于______度.

答案:
60 [解析]如图,连接OC,OD。$\because PA = PB$,$∠P = 60^{\circ}$,$\therefore \triangle PAB$是等边三角形,$\therefore ∠A = ∠B = 60^{\circ}$。$\because OA = OC = OD = OB$,$\therefore \triangle COA$,$\triangle DOB$都是等边三角形,$\therefore ∠COA = ∠DOB = 60^{\circ}$,$\therefore ∠COD = 180^{\circ} - ∠COA - ∠DOB = 60^{\circ}$。故答案为60。
7 如图,在$\odot O$中,点C是优弧$\overset{\frown }{ACB}$的中点,D,E分别是OA,OB上的点,且$AD= BE$,弦CM,CN分别过点D,E.求证:
(1)$CD= CE$.
(2)$\overset{\frown }{AM}= \overset{\frown }{BN}$.
答案:
[证明]
(1)如图,连接OC。$\because$点C是优弧$\overset{\frown }{ACB}$的中点,$\therefore \overset{\frown }{AC}=\overset{\frown }{BC}$,$\therefore ∠COD = ∠COE$。$\because OA = OB$,$AD = BE$,$\therefore OD = OE$。$\because OC = OC$,$\therefore \triangle COD\cong \triangle COE(SAS)$,$\therefore CD = CE$。
(2)如图,连接OM,ON;$\because \triangle COD\cong \triangle COE$,$\therefore ∠CDO = ∠CEO$,$∠OCD = ∠OCE$。$\because OC = OM = ON$,$\therefore ∠OCM = ∠OMC$,$∠OCN = ∠ONC$,$\therefore ∠OMD = ∠ONE$。$\because ∠ODC = ∠DMO + ∠MOD$,$∠CEO = ∠CNO + ∠EON$,$\therefore ∠MOA = ∠NOB$,$\therefore \overset{\frown }{AM}=\overset{\frown }{BN}$。
8 [2025江苏宿迁质检]如图,以$□ ABCD$的顶点A为圆心,AB为半径作$\odot A$,分别交BC,AD于E,F两点,交BA的延长线于点G.
(1)求证:$\overset{\frown }{EF}= \overset{\frown }{GF}$;
(2)若$\overset{\frown }{GE}的度数为140^{\circ}$,求$\angle C$的度数.
答案:

(1)[证明]如图,连接AE。$\because$四边形ABCD为平行四边形,$\therefore AD// BC$,$\therefore ∠FAE = ∠AEB$,$∠GAF = ∠B$。$\because AB = AE$,$\therefore ∠AEB = ∠B$,$\therefore ∠FAE = ∠GAF$,$\therefore \overset{\frown }{EF}= \overset{\frown }{GF}$。BE
(2)[解]$\because$GB为$\odot A$的直径,$\therefore \overset{\frown }{BG}$的度数为$180^{\circ}$。$\because \overset{\frown }{GE}$的度数为$140^{\circ}$,$\therefore \overset{\frown }{BE}$的度数为$40^{\circ}$,$\therefore ∠BAE = 40^{\circ}$。$\because AB = AE$,$\therefore ∠AEB = ∠B = \frac{180^{\circ} - ∠BAE}{2} = 70^{\circ}$。$\because$四边形ABCD为平行四边形,$\therefore AB// CD$,$\therefore ∠C = 180^{\circ} - ∠B = 110^{\circ}$。
9 [2025江苏宿迁调研]已知$\odot O$的一条弦AB把圆的周长分成$1:5$两部分,则弦AB所对的弧的度数为
$60^{\circ}$或$300^{\circ}$
.
答案: $60^{\circ}$或$300^{\circ}$ [解析]$\because \odot O$的一条弦AB把圆的周长分成$1:5$两部分,$\therefore$弦AB对应的圆心角的度数为$360^{\circ}×\frac{1}{1 + 5} = 60^{\circ}$,$\therefore$弦AB所对的劣弧的度数为$60^{\circ}$,弦AB所对的优弧的度数为$360^{\circ} - 60^{\circ} = 300^{\circ}$。故答案为$60^{\circ}$或$300^{\circ}$。思路分析:过D作$DE⊥AB$于E,求出$∠DOB = 60^{\circ}$,通过含$30^{\circ}$角的直角三角形的性质及勾股定理求出OE,DE的长度,再求出CE的长度,最后根据勾股定理求出DC的长度即可。易错警示:圆中一条弦所对的弧有两条,它们分别位于弦的两侧,本题容易忽略优弧而致错。

查看更多完整答案,请扫码查看

关闭