11. 如图,已知线段a,b,试用直尺和圆规画线段,使线段的长分别等于:
(1)b-a; (2)2a+b.

(1)b-a; (2)2a+b.
答案:
12. 如图,用刻度尺将线段AB四等分.

答案:
13. 如图,已知线段a,b,画出一条线段,使它等于2b-$\frac{1}{2}$a.

答案:
思维与拓展 28
AB,AC是同一直线上的两条线段,点M在线段AB上,且AM= $\frac{1}{3}$AB,点N在线段AC上,且AN= $\frac{1}{3}$AC.线段BC和线段MN的大小有什么关系?请说明理由.
AB,AC是同一直线上的两条线段,点M在线段AB上,且AM= $\frac{1}{3}$AB,点N在线段AC上,且AN= $\frac{1}{3}$AC.线段BC和线段MN的大小有什么关系?请说明理由.
答案:
解:分三种情况讨论:
情况1:点A在线段BC上。
设AB = 3x,AC = 3y(x,y > 0),则AM = x,AN = y。
BC = AB + AC = 3x + 3y = 3(x + y)。
MN = AM + AN = x + y。
∴ BC = 3MN。
情况2:点B在线段AC上。
设AB = 3x,AC = 3y(y > x > 0),则AM = x,AN = y。
BC = AC - AB = 3y - 3x = 3(y - x)。
MN = AN - AM = y - x。
∴ BC = 3MN。
情况3:点C在线段AB上。
设AB = 3x,AC = 3y(x > y > 0),则AM = x,AN = y。
BC = AB - AC = 3x - 3y = 3(x - y)。
MN = AM - AN = x - y。
∴ BC = 3MN。
综上,BC = 3MN。
情况1:点A在线段BC上。
设AB = 3x,AC = 3y(x,y > 0),则AM = x,AN = y。
BC = AB + AC = 3x + 3y = 3(x + y)。
MN = AM + AN = x + y。
∴ BC = 3MN。
情况2:点B在线段AC上。
设AB = 3x,AC = 3y(y > x > 0),则AM = x,AN = y。
BC = AC - AB = 3y - 3x = 3(y - x)。
MN = AN - AM = y - x。
∴ BC = 3MN。
情况3:点C在线段AB上。
设AB = 3x,AC = 3y(x > y > 0),则AM = x,AN = y。
BC = AB - AC = 3x - 3y = 3(x - y)。
MN = AM - AN = x - y。
∴ BC = 3MN。
综上,BC = 3MN。
查看更多完整答案,请扫码查看