2025年单元双测全优测评卷九年级数学下册苏科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年单元双测全优测评卷九年级数学下册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
18.(2024·深圳中考)如图,在△ABC中,AB = BC,tan B = $\frac{5}{12}$. D为BC上一点,且满足$\frac{BD}{CD}$ = $\frac{8}{5}$,过点D作DE⊥AD交AC延长线于点E,则$\frac{CE}{AC}$ = ________.

答案:
$\frac{20}{21}$ [解析]如图
(1),过点A作AH⊥CB于点H,作CM⊥AD于点M,
∵AB = BC,$\frac{BD}{DC}$ = $\frac{8}{5}$,
∴设BD = 8a,则CD = 5a,
∴BC = AB = BD + CD = 13a.
∵tan B = $\frac{5}{12}$,
∴AH = 5a,BH = 12a,
∴DH = BH - BD = 4a,CH = a.
在Rt△ACH中,AC = $\sqrt{AH^{2}+CH^{2}}$ = $\sqrt{26}$a,
在Rt△ADH中,AD = $\sqrt{AH^{2}+DH^{2}}$ = $\sqrt{41}$a,
∴cos∠ADC = $\frac{DH}{AD}$ = $\frac{4\sqrt{41}}{41}$,
∴DM = CD·cos∠ADC = $\frac{20\sqrt{41}}{41}$a,
∴AM = AD - DM = $\frac{21\sqrt{41}}{41}$a.
∵CM⊥AD,DE⊥AD,
∴CM//DE,
∴△AMC∽△ADE,
∴$\frac{CE}{AC}$ = $\frac{DM}{AM}$ = $\frac{20}{21}$.
(1),过点A作AH⊥CB于点H,作CM⊥AD于点M,
∵AB = BC,$\frac{BD}{DC}$ = $\frac{8}{5}$,
∴设BD = 8a,则CD = 5a,
∴BC = AB = BD + CD = 13a.
∵tan B = $\frac{5}{12}$,
∴AH = 5a,BH = 12a,
∴DH = BH - BD = 4a,CH = a.
在Rt△ACH中,AC = $\sqrt{AH^{2}+CH^{2}}$ = $\sqrt{26}$a,
在Rt△ADH中,AD = $\sqrt{AH^{2}+DH^{2}}$ = $\sqrt{41}$a,
∴cos∠ADC = $\frac{DH}{AD}$ = $\frac{4\sqrt{41}}{41}$,
∴DM = CD·cos∠ADC = $\frac{20\sqrt{41}}{41}$a,
∴AM = AD - DM = $\frac{21\sqrt{41}}{41}$a.
∵CM⊥AD,DE⊥AD,
∴CM//DE,
∴△AMC∽△ADE,
∴$\frac{CE}{AC}$ = $\frac{DM}{AM}$ = $\frac{20}{21}$.
19.(8分)计算:
(1)sin²30° + sin 60° - sin²45° + cos²30°;
(2)$\frac{tan 30° + tan 45°}{tan 60°×tan 45°}$.
(1)sin²30° + sin 60° - sin²45° + cos²30°;
(2)$\frac{tan 30° + tan 45°}{tan 60°×tan 45°}$.
答案:
(1)原式 = ($\frac{1}{2}$)² + $\frac{\sqrt{3}}{2}$ - ($\frac{\sqrt{2}}{2}$)² + ($\frac{\sqrt{3}}{2}$)² = $\frac{1}{4}$ + $\frac{\sqrt{3}}{2}$ - $\frac{1}{2}$ + $\frac{3}{4}$ = $\frac{1+\sqrt{3}}{2}$.
(2)原式 = $\frac{\frac{\sqrt{3}}{3}+1}{\sqrt{3}×1}$ = $\frac{1+\sqrt{3}}{3}$.
(1)原式 = ($\frac{1}{2}$)² + $\frac{\sqrt{3}}{2}$ - ($\frac{\sqrt{2}}{2}$)² + ($\frac{\sqrt{3}}{2}$)² = $\frac{1}{4}$ + $\frac{\sqrt{3}}{2}$ - $\frac{1}{2}$ + $\frac{3}{4}$ = $\frac{1+\sqrt{3}}{2}$.
(2)原式 = $\frac{\frac{\sqrt{3}}{3}+1}{\sqrt{3}×1}$ = $\frac{1+\sqrt{3}}{3}$.
20.(6分)如图,在△ABD中,AC⊥BD于点C,$\frac{BC}{CD}$ = $\frac{3}{2}$,点E是AB的中点,tan D = 2,CE = 1,求sin∠ECB的值和AD的长.

答案:
∵AC⊥BD,
∴∠ACB = ∠ACD = 90°.
∵点E是AB的中点,CE = 1,
∴BE = CE = 1,AB = 2CE = 2,
∴∠B = ∠ECB.
∵$\frac{BC}{CD}$ = $\frac{3}{2}$,
∴设BC = 3x,CD = 2x.
在Rt△ACD中,tan D = 2,
∴$\frac{AC}{CD}$ = 2.
∴AC = 4x. 在Rt△ACB中,
由勾股定理,得AB = $\sqrt{AC^{2}+BC^{2}}$ = 5x.
∴sin∠ECB = sin B = $\frac{AC}{AB}$ = $\frac{4}{5}$.
由AB = 2,得x = $\frac{2}{5}$,
∴AD = $\sqrt{AC^{2}+CD^{2}}$ = $\sqrt{(4x)^{2}+(2x)^{2}}$ = 2$\sqrt{5}$x = 2$\sqrt{5}$×$\frac{2}{5}$ = $\frac{4\sqrt{5}}{5}$.
∵AC⊥BD,
∴∠ACB = ∠ACD = 90°.
∵点E是AB的中点,CE = 1,
∴BE = CE = 1,AB = 2CE = 2,
∴∠B = ∠ECB.
∵$\frac{BC}{CD}$ = $\frac{3}{2}$,
∴设BC = 3x,CD = 2x.
在Rt△ACD中,tan D = 2,
∴$\frac{AC}{CD}$ = 2.
∴AC = 4x. 在Rt△ACB中,
由勾股定理,得AB = $\sqrt{AC^{2}+BC^{2}}$ = 5x.
∴sin∠ECB = sin B = $\frac{AC}{AB}$ = $\frac{4}{5}$.
由AB = 2,得x = $\frac{2}{5}$,
∴AD = $\sqrt{AC^{2}+CD^{2}}$ = $\sqrt{(4x)^{2}+(2x)^{2}}$ = 2$\sqrt{5}$x = 2$\sqrt{5}$×$\frac{2}{5}$ = $\frac{4\sqrt{5}}{5}$.
查看更多完整答案,请扫码查看