2025年单元双测全优测评卷九年级数学下册苏科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年单元双测全优测评卷九年级数学下册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1.(教材P42习题T1·变式)在比例尺为1:50的图纸上,长度为10cm的线段实际长为( ).
A. 50cm
B. 500cm
C. $\frac{1}{50}$cm
D. $\frac{1}{500}$cm
A. 50cm
B. 500cm
C. $\frac{1}{50}$cm
D. $\frac{1}{500}$cm
答案:
B
2. 新情境 树叶中蕴含的“黄金分割” (2024·宿迁沭阳期末)校园里一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么AP的长度为( ).

A. ($\sqrt{5}-1$)cm
B. (2$\sqrt{5}-2$)cm
C. (5$\sqrt{5}-5$)cm
D. (10$\sqrt{5}-10$)cm
A. ($\sqrt{5}-1$)cm
B. (2$\sqrt{5}-2$)cm
C. (5$\sqrt{5}-5$)cm
D. (10$\sqrt{5}-10$)cm
答案:
C
3. 如图,∠1=∠2=∠3,则图中相似三角形共有( ).

A. 3对
B. 4对
C. 5对
D. 6对
A. 3对
B. 4对
C. 5对
D. 6对
答案:
B
4.(2023·绍兴中考)如图,在△ABC中,D是边BC上的点(不与点B、C重合). 过点D作DE//AB交AC于点E,过点D作DF//AC交AB于点F,N是线段BF上的点,BN = 2NF,M是线段DE上的点,DM = 2ME. 若已知△CMN的面积,则一定能求出( ).

A. △AFE的面积
B. △BDF的面积
C. △BCN的面积
D. △DCE的面积
A. △AFE的面积
B. △BDF的面积
C. △BCN的面积
D. △DCE的面积
答案:
D [解析]如图,连接ND,
∵DE//AB,DF//AC,
∴∠ECD = ∠FDB,∠B = ∠EDC,∠BFD = ∠A,∠A = ∠DEC.
∴△FBD∽△EDC,
∴$\frac{FB}{ED}=\frac{FD}{EC}$.
∵DM = 2ME,BN = 2NF,
∴NF = $\frac{1}{3}$BF,ME = $\frac{1}{3}$DE,
∴$\frac{NF}{ME}=\frac{BF}{DE}$,
∴$\frac{FD}{EC}=\frac{NF}{ME}$.
又∠NFD = ∠MEC,
∴△NFD∽△MEC.
∴∠ECM = ∠FDN.
∵∠FDB = ∠ECD,
∴∠MCD = ∠NDB.
∴MC//ND.
∴$S_{\triangle MNC}=S_{\triangle MDC}$.
∵DM = 2ME,
∴$S_{\triangle MEC}=\frac{1}{2}S_{\triangle DMC}=\frac{1}{2}S_{\triangle MNC}$,
∴$S_{\triangle DCE}=\frac{3}{2}S_{\triangle MNC}$. 故选D.
D [解析]如图,连接ND,
∵DE//AB,DF//AC,
∴∠ECD = ∠FDB,∠B = ∠EDC,∠BFD = ∠A,∠A = ∠DEC.
∴△FBD∽△EDC,
∴$\frac{FB}{ED}=\frac{FD}{EC}$.
∵DM = 2ME,BN = 2NF,
∴NF = $\frac{1}{3}$BF,ME = $\frac{1}{3}$DE,
∴$\frac{NF}{ME}=\frac{BF}{DE}$,
∴$\frac{FD}{EC}=\frac{NF}{ME}$.
又∠NFD = ∠MEC,
∴△NFD∽△MEC.
∴∠ECM = ∠FDN.
∵∠FDB = ∠ECD,
∴∠MCD = ∠NDB.
∴MC//ND.
∴$S_{\triangle MNC}=S_{\triangle MDC}$.
∵DM = 2ME,
∴$S_{\triangle MEC}=\frac{1}{2}S_{\triangle DMC}=\frac{1}{2}S_{\triangle MNC}$,
∴$S_{\triangle DCE}=\frac{3}{2}S_{\triangle MNC}$. 故选D.
5.(2024·扬州梅岭中学期末)下列四条线段中,能成为成比例线段的是( ).
A. a = 1,b = 2,c = 3,d = 4
B. a = 1,b = 2,c = 3,d = 6
C. a = 2,b = 2,c = 3,d = 4
D. a = 1,b = 3,c = 4,d = 5
A. a = 1,b = 2,c = 3,d = 4
B. a = 1,b = 2,c = 3,d = 6
C. a = 2,b = 2,c = 3,d = 4
D. a = 1,b = 3,c = 4,d = 5
答案:
B
6. 下列4组条件中,能判定△ABC∽△DEF的是( ).
A. ∠A = 45°,∠B = 55°;∠D = 45°,∠F = 75°
B. AB = 5,BC = 4,∠A = 45°;DE = 10,EF = 8,∠D = 45°
C. AB = 6,BC = 5,∠B = 40°;DE = 5,EF = 4,∠E = 40°
D. BC = 4,AC = 6,AB = 9;DE = 18,EF = 8,DF = 12
A. ∠A = 45°,∠B = 55°;∠D = 45°,∠F = 75°
B. AB = 5,BC = 4,∠A = 45°;DE = 10,EF = 8,∠D = 45°
C. AB = 6,BC = 5,∠B = 40°;DE = 5,EF = 4,∠E = 40°
D. BC = 4,AC = 6,AB = 9;DE = 18,EF = 8,DF = 12
答案:
D [解析]A.
∵∠A = 45°,∠B = 55°;∠D = 45°,∠F = 75°,
∴∠C = 80°,
∴∠A = ∠D,但另两角不对应相等,
∴不能判定△ABC∽△DEF,故本选项错误;
B.
∵AB = 5,BC = 4,∠A = 45°;DE = 10,EF = 8,∠D = 45°,而∠A不是AB与BC的夹角,∠D不是DE与EF的夹角,
∴不能判定△ABC∽△DEF,故本选项错误;
C.
∵AB = 6,BC = 5,∠B = 40°;DE = 5,EF = 4,∠E = 40°,
∴$\frac{AB}{DE}\neq\frac{BC}{EF}$,
∴不能判定△ABC∽△DEF,故本选项错误;
D.
∵BC = 4,AC = 6,AB = 9;DE = 18,EF = 8,DF = 12,
∴$\frac{BC}{EF}=\frac{AC}{DF}=\frac{AB}{DE}=\frac{1}{2}$,
∴△ABC∽△DEF,故本选项正确.
∵∠A = 45°,∠B = 55°;∠D = 45°,∠F = 75°,
∴∠C = 80°,
∴∠A = ∠D,但另两角不对应相等,
∴不能判定△ABC∽△DEF,故本选项错误;
B.
∵AB = 5,BC = 4,∠A = 45°;DE = 10,EF = 8,∠D = 45°,而∠A不是AB与BC的夹角,∠D不是DE与EF的夹角,
∴不能判定△ABC∽△DEF,故本选项错误;
C.
∵AB = 6,BC = 5,∠B = 40°;DE = 5,EF = 4,∠E = 40°,
∴$\frac{AB}{DE}\neq\frac{BC}{EF}$,
∴不能判定△ABC∽△DEF,故本选项错误;
D.
∵BC = 4,AC = 6,AB = 9;DE = 18,EF = 8,DF = 12,
∴$\frac{BC}{EF}=\frac{AC}{DF}=\frac{AB}{DE}=\frac{1}{2}$,
∴△ABC∽△DEF,故本选项正确.
查看更多完整答案,请扫码查看