2025年单元双测全优测评卷九年级数学下册苏科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年单元双测全优测评卷九年级数学下册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
20.(6分)在一次数学活动课上,数学老师在同一平面内将一副直角三角板按如图位置摆放,点C在FD的延长线上,AB//CF,∠F = ∠ACB = 90°,∠E = 45°,∠A = 60°,AC = 10,求CD的长.

答案:
如图,过点B作BM⊥FD于点M.
在△ACB中,∠ACB = 90°,∠A = 60°,AC = 10,
∴∠ABC = 30°,BC = AC·tan 60° = 10$\sqrt{3}$.
∵AB//CF,
∴∠BCM = ∠ABC = 30°.
∴BM = BC·sin 30° = 10$\sqrt{3}$×$\frac{1}{2}$ = 5$\sqrt{3}$,
CM = BC·cos 30° = 10$\sqrt{3}$×$\frac{\sqrt{3}}{2}$ = 15.
在△EFD中,∠F = 90°,∠E = 45°,
∴∠EDF = 45°,
∴MD = BM = 5$\sqrt{3}$,
∴CD = CM - MD = 15 - 5$\sqrt{3}$.
如图,过点B作BM⊥FD于点M.
在△ACB中,∠ACB = 90°,∠A = 60°,AC = 10,
∴∠ABC = 30°,BC = AC·tan 60° = 10$\sqrt{3}$.
∵AB//CF,
∴∠BCM = ∠ABC = 30°.
∴BM = BC·sin 30° = 10$\sqrt{3}$×$\frac{1}{2}$ = 5$\sqrt{3}$,
CM = BC·cos 30° = 10$\sqrt{3}$×$\frac{\sqrt{3}}{2}$ = 15.
在△EFD中,∠F = 90°,∠E = 45°,
∴∠EDF = 45°,
∴MD = BM = 5$\sqrt{3}$,
∴CD = CM - MD = 15 - 5$\sqrt{3}$.
21.(6分)(2024·浙江中考)如图,在△ABC中,AD⊥BC,AE是边BC上的中线,AB = 10,AD = 6,tan∠ACB = 1.
(1)求BC的长;
(2)求sin∠DAE的值.

(1)求BC的长;
(2)求sin∠DAE的值.
答案:
(1)
∵AD⊥BC,AB = 10,AD = 6,
∴BD = $\sqrt{AB^{2}-AD^{2}}$ = $\sqrt{10^{2}-6^{2}}$ = 8.
∵tan∠ACB = 1,
∴CD = AD = 6,
∴BC = BD + CD = 8 + 6 = 14.
(2)
∵AE是BC边上的中线,
∴CE = $\frac{1}{2}$BC = 7,
∴DE = CE - CD = 7 - 6 = 1.
∵AD⊥BC,
∴AE = $\sqrt{AD^{2}+DE^{2}}$ = $\sqrt{6^{2}+1^{2}}$ = $\sqrt{37}$,
∴sin∠DAE = $\frac{DE}{AE}$ = $\frac{1}{\sqrt{37}}$ = $\frac{\sqrt{37}}{37}$.
(1)
∵AD⊥BC,AB = 10,AD = 6,
∴BD = $\sqrt{AB^{2}-AD^{2}}$ = $\sqrt{10^{2}-6^{2}}$ = 8.
∵tan∠ACB = 1,
∴CD = AD = 6,
∴BC = BD + CD = 8 + 6 = 14.
(2)
∵AE是BC边上的中线,
∴CE = $\frac{1}{2}$BC = 7,
∴DE = CE - CD = 7 - 6 = 1.
∵AD⊥BC,
∴AE = $\sqrt{AD^{2}+DE^{2}}$ = $\sqrt{6^{2}+1^{2}}$ = $\sqrt{37}$,
∴sin∠DAE = $\frac{DE}{AE}$ = $\frac{1}{\sqrt{37}}$ = $\frac{\sqrt{37}}{37}$.
22.(6分)(2024·苏州中考)如图,△ABC中,AB = 4$\sqrt{2}$,D为AB中点,∠BAC = ∠BCD,cos∠ADC = $\frac{\sqrt{2}}{4}$,⊙O是△ACD的外接圆.
(1)求BC的长;
(2)求⊙O的半径.

(1)求BC的长;
(2)求⊙O的半径.
答案:
(1)
∵∠BAC = ∠BCD,∠B = ∠B,
∴△BAC∽△BCD,
∴$\frac{BC}{BD}$ = $\frac{BA}{BC}$.
∵AB = 4$\sqrt{2}$,D为AB中点,
∴BD = AD = 2$\sqrt{2}$,
∴BC² = 16,
∴BC = 4.
(2)如图,过点A作AE⊥CD于点E,连接CO,并延长交⊙O于F,连接AF,

∵在Rt△AED中,cos∠CDA = $\frac{DE}{AD}$ = $\frac{\sqrt{2}}{4}$,AD = 2$\sqrt{2}$,
∴DE = 1,
∴AE = $\sqrt{AD^{2}-DE^{2}}$ = $\sqrt{7}$.
∵△BAC∽△BCD,
∴$\frac{AC}{CD}$ = $\frac{AB}{BC}$ = $\sqrt{2}$.
设CD = x,则AC = $\sqrt{2}$x,CE = x - 1,
∵在Rt△ACE中,AC² = CE² + AE²,
∴($\sqrt{2}$x)² = (x - 1)² + ($\sqrt{7}$)²,即x² + 2x - 8 = 0,
解得x = 2或x = -4(舍去),
∴CD = 2,AC = 2$\sqrt{2}$.
∵∠AFC与∠ADC都是$\overset{\frown}{AC}$所对的圆周角,
∴∠AFC = ∠ADC.
∵CF为⊙O的直径,
∴∠CAF = 90°,
∴sin∠AFC = $\frac{AC}{CF}$ = sin∠CDA = $\frac{AE}{AD}$ = $\frac{\sqrt{14}}{4}$,
∴CF = $\frac{8\sqrt{7}}{7}$,即⊙O的半径为$\frac{4\sqrt{7}}{7}$.
(1)
∵∠BAC = ∠BCD,∠B = ∠B,
∴△BAC∽△BCD,
∴$\frac{BC}{BD}$ = $\frac{BA}{BC}$.
∵AB = 4$\sqrt{2}$,D为AB中点,
∴BD = AD = 2$\sqrt{2}$,
∴BC² = 16,
∴BC = 4.
(2)如图,过点A作AE⊥CD于点E,连接CO,并延长交⊙O于F,连接AF,
∵在Rt△AED中,cos∠CDA = $\frac{DE}{AD}$ = $\frac{\sqrt{2}}{4}$,AD = 2$\sqrt{2}$,
∴DE = 1,
∴AE = $\sqrt{AD^{2}-DE^{2}}$ = $\sqrt{7}$.
∵△BAC∽△BCD,
∴$\frac{AC}{CD}$ = $\frac{AB}{BC}$ = $\sqrt{2}$.
设CD = x,则AC = $\sqrt{2}$x,CE = x - 1,
∵在Rt△ACE中,AC² = CE² + AE²,
∴($\sqrt{2}$x)² = (x - 1)² + ($\sqrt{7}$)²,即x² + 2x - 8 = 0,
解得x = 2或x = -4(舍去),
∴CD = 2,AC = 2$\sqrt{2}$.
∵∠AFC与∠ADC都是$\overset{\frown}{AC}$所对的圆周角,
∴∠AFC = ∠ADC.
∵CF为⊙O的直径,
∴∠CAF = 90°,
∴sin∠AFC = $\frac{AC}{CF}$ = sin∠CDA = $\frac{AE}{AD}$ = $\frac{\sqrt{14}}{4}$,
∴CF = $\frac{8\sqrt{7}}{7}$,即⊙O的半径为$\frac{4\sqrt{7}}{7}$.
查看更多完整答案,请扫码查看