第5页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
1.下列运算正确的是(M8216003) ( )
A.$\sqrt{2}\times\sqrt{5}=\sqrt{7}$
B.$8\sqrt{2}\times\sqrt{\frac{1}{16}} = 1$
C.$\sqrt{2}\times\sqrt{6} = 12$
D.$\sqrt{12}\times\sqrt{\frac{3}{4}} = 3$
A.$\sqrt{2}\times\sqrt{5}=\sqrt{7}$
B.$8\sqrt{2}\times\sqrt{\frac{1}{16}} = 1$
C.$\sqrt{2}\times\sqrt{6} = 12$
D.$\sqrt{12}\times\sqrt{\frac{3}{4}} = 3$
答案:
D
$ \begin{aligned} &\sqrt{2} \times \sqrt{5} = \sqrt{2 \times 5} = \sqrt{10},选项A不符合题意;\\ &8\sqrt{2} \times \sqrt{\frac{1}{16}} = 8 \times \sqrt{2} \times \frac{1}{4} = 2\sqrt{2},选项B不符合题意;\\ &\sqrt{2} \times \sqrt{6} = \sqrt{2 \times 6} = \sqrt{12},选项C不符合题意;\\ &\sqrt{12} \times \sqrt{\frac{3}{4}} = \sqrt{12 \times \frac{3}{4}} = \sqrt{9} = 3,选项D符合题意. \end{aligned} $
故选D.
$ \begin{aligned} &\sqrt{2} \times \sqrt{5} = \sqrt{2 \times 5} = \sqrt{10},选项A不符合题意;\\ &8\sqrt{2} \times \sqrt{\frac{1}{16}} = 8 \times \sqrt{2} \times \frac{1}{4} = 2\sqrt{2},选项B不符合题意;\\ &\sqrt{2} \times \sqrt{6} = \sqrt{2 \times 6} = \sqrt{12},选项C不符合题意;\\ &\sqrt{12} \times \sqrt{\frac{3}{4}} = \sqrt{12 \times \frac{3}{4}} = \sqrt{9} = 3,选项D符合题意. \end{aligned} $
故选D.
2.如图,一只电子蚂蚁在数轴上爬行,爬到表示$\frac{\sqrt{5}}{2}\times(-2\sqrt{2})$的点处,则该点可能是下列点中的 ( )

A.点E
B.点F
C.点P
D.点Q
A.点E
B.点F
C.点P
D.点Q
答案:
A
$
\frac{\sqrt{5}}{2} \times (-2\sqrt{2}) = -\sqrt{10},-4 < -\sqrt{10} < -3,由数轴可知点E所表示的数大于 -4且小于 -3,故选A.
$
3.比较大小:$5\sqrt{6}$____$6\sqrt{5}$.(填“>”“<”或“=”)
答案:
答案 <
解析 $\because (5\sqrt{6})^2 = 150,(6\sqrt{5})^2 = 180,150 < 180$,
$\therefore 5\sqrt{6} < 6\sqrt{5}$.
4.为了加强学生暑期防溺水意识,某中学给同学们发放了如图所示的“防溺水告家长书”,已知该信纸的长为$10\sqrt{5}$ cm,回执单的宽度($a$ cm)为整张信纸长度的$\frac{\sqrt{3}}{5}$,则$a$的值为______.(M8216003)
××× ××× ×××

××× ××× ×××
答案:
答案 $2\sqrt{15}$
解析 $a = 10\sqrt{5} \times \frac{\sqrt{3}}{5} = 10 \times \frac{1}{5} \times \sqrt{5} \times \sqrt{3} = 2 \times \sqrt{5 \times 3} = 2\sqrt{15}$.
5.教材变式·P7T3 小威在微机课上设计了一幅长方形图片,已知长方形的长是$\sqrt{140\pi}$ cm,宽是$\sqrt{35\pi}$ cm,他又设计了一个面积与其相等的圆,则该圆的半径为______.(M8216003)
答案:
答案 $\sqrt{70}\text{ cm}$
解析 设该圆的半径为 $R\text{ cm}$,根据题意得 $\pi \cdot R^2 = \sqrt{140\pi} \cdot \sqrt{35\pi} = \pi \cdot 70$,所以 $R = \sqrt{70}$(负值舍去).
故该圆的半径为 $\sqrt{70}\text{ cm}$.
6.计算:(M8216003)
(1)$\sqrt{8}\times\sqrt{18}$. (2)$\sqrt{1.2\times10^{2}}\times\sqrt{3\times10^{5}}$.
(3)$\sqrt{2}\times\sqrt{5}\times\sqrt{10}$. (4)$\frac{1}{4}\sqrt{12a}\times3\sqrt{3a}$.
(1)$\sqrt{8}\times\sqrt{18}$. (2)$\sqrt{1.2\times10^{2}}\times\sqrt{3\times10^{5}}$.
(3)$\sqrt{2}\times\sqrt{5}\times\sqrt{10}$. (4)$\frac{1}{4}\sqrt{12a}\times3\sqrt{3a}$.
答案:
解析
(1) $\sqrt{8} \times \sqrt{18} = \sqrt{8 \times 18} = \sqrt{144} = 12$.
(2) $\sqrt{1.2 \times 10^2} \times \sqrt{3 \times 10^5} = \sqrt{3.6 \times 10^7} = \sqrt{36 \times 10^6} = 6000$.
(3) $\sqrt{2} \times \sqrt{5} \times \sqrt{10} = \sqrt{2 \times 5 \times 10} = \sqrt{100} = 10$.
(4) $\frac{1}{4}\sqrt{12a} \times 3\sqrt{3a} = \frac{1}{4} \times 3 \times \sqrt{12a \times 3a} = \frac{3}{4} \times \sqrt{36a^2} = \frac{9a}{2}$.
(1) $\sqrt{8} \times \sqrt{18} = \sqrt{8 \times 18} = \sqrt{144} = 12$.
(2) $\sqrt{1.2 \times 10^2} \times \sqrt{3 \times 10^5} = \sqrt{3.6 \times 10^7} = \sqrt{36 \times 10^6} = 6000$.
(3) $\sqrt{2} \times \sqrt{5} \times \sqrt{10} = \sqrt{2 \times 5 \times 10} = \sqrt{100} = 10$.
(4) $\frac{1}{4}\sqrt{12a} \times 3\sqrt{3a} = \frac{1}{4} \times 3 \times \sqrt{12a \times 3a} = \frac{3}{4} \times \sqrt{36a^2} = \frac{9a}{2}$.
7.化简二次根式$\sqrt{(-5)^{2}\times7}$的结果为 ( )
A.$-5\sqrt{7}$
B.$5\sqrt{7}$
C.$\pm5\sqrt{7}$
D.$\sqrt{35}$
A.$-5\sqrt{7}$
B.$5\sqrt{7}$
C.$\pm5\sqrt{7}$
D.$\sqrt{35}$
答案:
B
根据 $\sqrt{a^2} = |a|$ 以及 $\sqrt{ab} = \sqrt{a} \times \sqrt{b}(a \geq 0,b \geq 0)$ 可得 $\sqrt{(-5)^2 \times 7} = \sqrt{(-5)^2} \times \sqrt{7} = 5\sqrt{7}$. 故选B.
8.下列各式计算正确的是(M8216003) ( )
A.$\sqrt{(-25)\times(-36)} = \sqrt{-25}\times\sqrt{-36} = (-5)\times(-6) = 30$
B.$\sqrt{4\times5} = 4\sqrt{5}$
C.$\sqrt{4^{2}+5^{2}} = 4 + 5 = 9$
D.$\sqrt{15^{2}-12^{2}} = \sqrt{15 + 12}\times\sqrt{15 - 12} = 9$
A.$\sqrt{(-25)\times(-36)} = \sqrt{-25}\times\sqrt{-36} = (-5)\times(-6) = 30$
B.$\sqrt{4\times5} = 4\sqrt{5}$
C.$\sqrt{4^{2}+5^{2}} = 4 + 5 = 9$
D.$\sqrt{15^{2}-12^{2}} = \sqrt{15 + 12}\times\sqrt{15 - 12} = 9$
答案:
D
$\sqrt{(-25) \times (-36)} = \sqrt{-25} \times \sqrt{-36}$ 无意义,故A不正确;$\sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$,故B不正确;$\sqrt{4^2 + 5^2} = \sqrt{16 + 25} = \sqrt{41}$,故C不正确;$\sqrt{15^2 - 12^2} = \sqrt{15 + 12} \times \sqrt{15 - 12} = \sqrt{27} \times \sqrt{3} = 9$,故D正确.
9.若$\sqrt{2} = a,\sqrt{3} = b$,则$\sqrt{0.24}$用含有$a$、$b$的式子表示为 ( )
A.$0.1ab^{2}$
B.$0.1a^{3}b$
C.$0.2ab^{2}$
D.$2ab$
A.$0.1ab^{2}$
B.$0.1a^{3}b$
C.$0.2ab^{2}$
D.$2ab$
答案:
B
$\because \sqrt{2} = a,\sqrt{3} = b,\therefore \sqrt{0.24} = \sqrt{2^3 \times 3 \times 0.01} = \sqrt{2^3} \times \sqrt{3} \times 0.1 = (\sqrt{2})^3 \times \sqrt{3} \times 0.1 = a^3b \times 0.1 = 0.1a^3b$. 故选B.
10.如果一个无理数$m$与$\sqrt{27}$的积是一个有理数,写出$m$的一个值是______.
答案:
答案 $\sqrt{3}$(答案不唯一)
解析 $\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}$,若无理数 $m$ 与 $\sqrt{27}$ 的积是一个有理数,则 $m$ 的值可以为 $\sqrt{3}$(答案不唯一).
11.当$a < 0$时,化简$\sqrt{-2a}\times\sqrt{-8a}$的结果是______.
答案:
答案 $-4a$
解析 $\sqrt{-2a} \times \sqrt{-8a} = \sqrt{(-2a) \times (-8a)} = \sqrt{16a^2} = \sqrt{16} \times \sqrt{a^2} = 4|a|$. $\because a < 0,\therefore \sqrt{-2a} \times \sqrt{-8a} = 4|a| = -4a$.
12.若$\sqrt{x^{3}+5x^{2}} = -x\sqrt{x + 5}$,则$x$的取值范围是______.
答案:
答案 $-5 \leq x \leq 0$
解析 $\because \sqrt{x^4 + 5x^2} = \sqrt{x^2(x + 5)} = \sqrt{x^2} \cdot \sqrt{x + 5} = |x| \cdot \sqrt{x + 5} = -x\sqrt{x + 5},\therefore x \leq 0$ 且 $x + 5 \geq 0,\therefore -5 \leq x \leq 0$.
13.教材变式·P7T2 计算:(M8216003)
(1)$\sqrt{80}$.(2)$\sqrt{(-3)^{2}\times16}$.
(3)$\sqrt{8a^{3}b}(a > 0,b > 0)$.
(1)$\sqrt{80}$.(2)$\sqrt{(-3)^{2}\times16}$.
(3)$\sqrt{8a^{3}b}(a > 0,b > 0)$.
答案:
解析
(1) $\sqrt{80} = \sqrt{16 \times 5} = \sqrt{16} \times \sqrt{5} = 4\sqrt{5}$.
(2) $\sqrt{(-3)^2 \times 16} = \sqrt{(-3)^2} \times \sqrt{16} = 3 \times 4 = 12$.
(3) $\sqrt{8a^3b} = \sqrt{8} \times \sqrt{a^3} \times \sqrt{b} = \sqrt{4 \times 2} \times \sqrt{a^2 \times a} \times \sqrt{b} = 2a\sqrt{2ab}$.
(1) $\sqrt{80} = \sqrt{16 \times 5} = \sqrt{16} \times \sqrt{5} = 4\sqrt{5}$.
(2) $\sqrt{(-3)^2 \times 16} = \sqrt{(-3)^2} \times \sqrt{16} = 3 \times 4 = 12$.
(3) $\sqrt{8a^3b} = \sqrt{8} \times \sqrt{a^3} \times \sqrt{b} = \sqrt{4 \times 2} \times \sqrt{a^2 \times a} \times \sqrt{b} = 2a\sqrt{2ab}$.
查看更多完整答案,请扫码查看