2026年决胜中考数学安徽专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年决胜中考数学安徽专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年决胜中考数学安徽专版》

3.($2020·$安徽节选)如图,$AB$是半圆$O$的直径,$C$,$D$是半圆$O$上不同于$A$,$B$的两点,$AD = BC$,$AC$与$BD$相交于点$F$,$BE$是半圆$O$所在圆的切线,与$AC$的延长线相交于点$E$. 若$BE = BF$,求证:$AC$平分$\angle DAB$.
答案: 3. 证明:
∵AB为直径,
∴∠ACB = ∠ADB = 90°.
∵BE = BF,∠ACB = 90°,
∴∠FBC = ∠EBC.
∵∠ADB = ∠ACB = 90°,∠DFA = ∠CFB,
∴∠DAF = ∠FBC = ∠EBC.
∵BE为半圆O的切线,
∴∠ABE = 90°,∠ABC + ∠EBC = 90°.
∵∠ACB = 90°,
∴∠CAB + ∠ABC = 90°,
∴∠CAB = ∠EBC,
∴∠DAF = ∠CAB,
∴AC平分∠DAB.
4.($2018·$安徽)如图,菱形$ABOC$的$AB$,$AC$分别与$\odot O$相切于点$D$,$E$,若点$D$是$AB$的中点,则$\angle DOE =$
60°
.
答案: 4. 60° [解析]
∵AB,AC分别与⊙O相切于点D,E,
∴∠BDO = ∠ADO = ∠AEO = 90°.
∵四边形ABOC是菱形,
∴AB = BO,∠A + ∠B = 180°.
∵BD = $\frac{1}{2}$AB,
∴BD = $\frac{1}{2}$OB. 在Rt△OBD中,∠ODB = 90°,BD = $\frac{1}{2}$OB,
∴cos B = $\frac{BD}{OB} = \frac{1}{2}$,
∴∠B = 60°,
∴∠A = 120°,
∴∠DOE = 360° - 120° - 90° - 90° = 60°.
5.($2025·$上海)在锐角三角形$ABC$中,$AB = AC$,$BC = 8$,$\triangle ABC$的外接圆为$\odot O$,且半径为$5$,边$BC$中点为$D$,如果以$D$为圆心的圆与$\odot O$相交,那么$\odot D$的半径可以是

A.$2$
B.$5$
C.$8$
D.$9$
答案: 5. B
6.($2025·$福建)如图,$PA$与$\odot O$相切于点$A$,$PO$的延长线交$\odot O$于点$C$. $AB// PC$,且交$\odot O$于点$B$. 若$\angle P = 30°$,则$\angle BCP$的大小为

A.$30°$
B.$45°$
C.$60°$
D.$75°$
答案: 6. C
7.($2025·$云南)已知$\odot O$的半径为$5\ cm$. 若点$P$在$\odot O$上,则点$P$到圆心$O$的距离为
5
$cm$.
答案: 7. 5
8.($2025·$重庆)如图,$AB$是$\odot O$的直径,点$C$在$\odot O$上,连接$AC$. 以$AC$为边作菱形$ACDE$,$CD$交$\odot O$于点$F$,$AB\perp CD$,垂足为$G$. 连接$AD$,交$\odot O$于点$H$,连接$EH$. 若$AG = 12$,$GF = 5$,则$DF$的长度为
3
,$EH$的长度为
$\frac{13\sqrt{13}}{4}$
.
答案:
8. 3 $\frac{13\sqrt{13}}{4}$ [解析]
∵AB⊥CD, AG = 12,GF = 5,
∴CG = GF = 5,即CF = 2CG = 10,
∴AC = $\sqrt{AG^2 + CG^2} = \sqrt{12^2 + 5^2} = 13$.
∵四边形ACDE是菱形,
∴CD = AC = 13,
∴GD = CD - CG = 13 - 5 = 8,DF = CD - CF = 13 - 10 = 3. 在Rt△AGD中,AD = $\sqrt{AG^2 + GD^2} = \sqrt{12^2 + 8^2} = 4\sqrt{13}$.
如图,连接BC,BH.
∵AB是⊙O的直径,
∴∠ACB = 90°,∠AHB = 90°,
∴cos∠CAB = $\frac{AG}{AC} = \frac{AC}{AB}$,即$\frac{12}{13} = \frac{13}{AB}$,解得AB = $\frac{169}{12}$,
∴cos∠DAB = $\frac{AG}{AD} = \frac{AH}{AB}$,即$\frac{12}{4\sqrt{13}} = \frac{AH}{169}$,解得AH = $\frac{13\sqrt{13}}{4}$.
∵四边形ACDE是菱形,
∴CD//AE,
∴∠DAE = ∠CDA,如图,过点H作HI⊥AE于点I,
∴sin∠DAE = sin∠GDA,cos∠DAE = cos∠GDA,
∴$\frac{IH}{AH} = \frac{AG}{AD}$,$\frac{AI}{AH} = \frac{GD}{AD}$,
∴$\frac{IH}{\frac{13\sqrt{13}}{4}} = \frac{12}{4\sqrt{13}}$,$\frac{AI}{\frac{13\sqrt{13}}{4}} = \frac{8}{4\sqrt{13}}$,
∴IH = $\frac{39}{4}$,AI = $\frac{13}{2}$,
∴IE = AE - AI = 13 - $\frac{13}{2} = \frac{13}{2}$,
∴EH = $\sqrt{IE^2 + IH^2} = \frac{13\sqrt{13}}{4}$.
9.($2025·$达州)如图,在$\odot O$中,$AB$是弦,$PA$是$\odot O$的切线,$PA = PB$,点$C$,$D$,$E$分别是线段$AB$,$AP$,$BP$上的动点,连接$CD$,$CE$,$\angle DCE = \angle P = \alpha$.
(1)试判断$PB$与$\odot O$的位置关系,并说明理由;
(2)若$\alpha = 60°$,$CD : CE = 1 : 2$,试求$4AD + BE$与$\odot O$半径$r$的数量关系.
答案:
9. 解:
(1)PB是⊙O的切线. 理由如下:如图,连接OA,OB.
∵OA = OB,
∴∠BAO = ∠ABO.
∵PA = PB,
∴∠PAB = ∠PBA.
∵PA是⊙O的切线,OA是⊙O的半径,
∴∠PAO = ∠BAO + ∠PAB = 90°,
∴∠PBO = ∠ABO + ∠PBA = 90°. 又
∵OB是⊙O的半径,
∴PB是⊙O的切线.
(2)
∵∠P = 60°,PA = PB,
∴△ABP是 等边三角形,
∴AB = PA = PB,∠PAB = ∠PBA = 60°,
∴∠ADC + ∠ACD = 180° - ∠PAB = 120°.
∵∠DCE = 60°,
∴∠BCE + ∠ACD = 180° - ∠DCE = 120°,
∴∠ADC = ∠BCE,
∴△ADC∽△BCE,
∴$\frac{AD}{BC} = \frac{AC}{BE} = \frac{CD}{EC}$.
∵$\frac{CD}{EC} = \frac{1}{2}$,
∴AD = $\frac{1}{2}$BC,AC = $\frac{1}{2}$BE,
∴4AD + BE = 2BC + 2AC = 2AB. 如图,过点O作OF⊥AB于点F,则AF = $\frac{1}{2}$AB,由
(1)得∠PAO = 90°,
∴∠OAF = ∠PAO - ∠PAB = 90° - 60° = 30°. 在Rt△AOF中,AO = r,OF = $\frac{1}{2}$AO = $\frac{1}{2}$r,
∴AF = $\sqrt{AO^2 - OF^2} = \sqrt{r^2 - (\frac{1}{2}r)^2} = \frac{\sqrt{3}}{2}r$,
∴AB = 2AF = 2×$\frac{\sqrt{3}}{2}r = \sqrt{3}r$,
∴4AD + BE = 2AB = 2$\sqrt{3}$r.

查看更多完整答案,请扫码查看

关闭