2026年步步高精准讲练高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年步步高精准讲练高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
例 2 求和:$ S_{n}=x+2x^{2}+3x^{3}+·s +nx^{n}(x\neq 0) $.
反思感悟:
反思感悟:
答案:
解 当$x = 1$时,$S_{n} = 1 + 2 + 3 + ·s + n = \frac{n(n + 1)}{2}$;当$x \neq 1$时,$S_{n} = x + 2x^{2} + 3x^{3} + ·s + nx^{n}$,$xS_{n} = x^{2} + 2x^{3} + 3x^{4} + ·s + (n - 1)x^{n} + nx^{n + 1}$,所以$(1 - x)S_{n} = x + x^{2} + x^{3} + ·s + x^{n} - nx^{n + 1} = \frac{x(1 - x^{n})}{1 - x} - nx^{n + 1}$,所以$S_{n} = \frac{x(1 - x^{n})}{(1 - x)^{2}} - \frac{nx^{n + 1}}{1 - x}$.综上可得,$S_{n} = \begin{cases} \frac{n(n + 1)}{2}, x = 1, \\ \frac{x(1 - x^{n})}{(1 - x)^{2}} - \frac{nx^{n + 1}}{1 - x}, x \neq 1 且 x \neq 0. \end{cases}$
跟踪训练 2 (1)已知数列$\{ a_{n}\}$的前 $ n $ 项和为 $ S_{n} $,且$ S_{n}=2a_{n}-2(n\in \mathbf{N}^{*}) $.
①求数列$\{ a_{n}\}$的通项公式;
②若$ b_{n}=\frac {1+\log$${2}a_{n}}{a_{n}} $,求数列$\{ b_{n}\}$的前 $ n $ 项和 $ T_{n} $.
(2)在①$ S_{n}=2^{n}-3n - 1 $;②$ a_{n + 1}=2a_{n}+3 $,$ a_{1}=-2 $这两个条件中任选一个,补充在下面的问题中,并作答. 设数列$\{ a_{n}\}$的前 $ n $ 项和为 $ S_{n} $,且.
(i)求数列$\{ a_{n}\}$的通项公式;
(ii)若$ b_{n}=n· (a_{n}+3) $,求数列$\{ b_{n}\}$的前 $ n $ 项和 $ T_{n} $.
注:如果选择多个条件分别解答,按第一个解答计分.
①求数列$\{ a_{n}\}$的通项公式;
②若$ b_{n}=\frac {1+\log$${2}a_{n}}{a_{n}} $,求数列$\{ b_{n}\}$的前 $ n $ 项和 $ T_{n} $.
(2)在①$ S_{n}=2^{n}-3n - 1 $;②$ a_{n + 1}=2a_{n}+3 $,$ a_{1}=-2 $这两个条件中任选一个,补充在下面的问题中,并作答. 设数列$\{ a_{n}\}$的前 $ n $ 项和为 $ S_{n} $,且.
(i)求数列$\{ a_{n}\}$的通项公式;
(ii)若$ b_{n}=n· (a_{n}+3) $,求数列$\{ b_{n}\}$的前 $ n $ 项和 $ T_{n} $.
注:如果选择多个条件分别解答,按第一个解答计分.
答案:
(1)解 ①因为$S_{n} = 2a_{n} -2$,当$n = 1$时,$S_{1} = 2a_{1} - 2$,解得$a_{1} = 2$,当$n \geq 2$时,$S_{n - 1} = 2a_{n - 1} - 2$,所以$a_{n} = S_{n} - S_{n - 1} = (2a_{n} - 2) - (2a_{n - 1} - 2) = 2a_{n} - 2a_{n - 1}$,即$a_{n} = 2a_{n - 1}(n \geq 2)$.所以数列$\{a_{n}\}$是首项为$2$,公比为$2$的等比数列,故$a_{n} = 2 × 2^{n - 1} = 2^{n}$.②由①知$a_{n} = 2^{n}$,则$b_{n} = \frac{1 + \log_{2}a_{n}}{a_{n}} = \frac{1 + \log_{2}2^{n}}{2^{n}} = \frac{n + 1}{2^{n}}$,所以$T_{n} = \frac{2}{2} + \frac{3}{2^{2}} + \frac{4}{2^{3}} + ·s + \frac{n + 1}{2^{n}}$ ①$\frac{1}{2}T_{n} = \frac{2}{2^{2}} + \frac{3}{2^{3}} + ·s + \frac{n}{2^{n}} + \frac{n + 1}{2^{n + 1}}$,②①$-$②得$\frac{1}{2}T_{n} = 1 + (\frac{1}{2^{2}} + \frac{1}{2^{3}} + ·s + \frac{1}{2^{n}}) - \frac{n + 1}{2^{n + 1}} = 1 + \frac{\frac{1}{2^{2}}(1 - \frac{1}{2^{n - 1}})}{1 - \frac{1}{2}} - \frac{n + 1}{2^{n + 1}} = 1 + \frac{1}{2} × \frac{1 - \frac{1}{2^{n - 1}}}{\frac{1}{2}} - \frac{n + 1}{2^{n + 1}} = \frac{3}{2} - \frac{n + 3}{2^{n + 1}}$.所以数列$\{b_{n}\}$的前$n$项和$T_{n} = 3 - \frac{n + 3}{2^{n}}$.
(2)解 (ⅰ)若选①:因为$S_{n} = 2^{n} - 3n - 1$,所以当$n \geq 2$时,$a_{n} = S_{n} - S_{n - 1} = 2^{n} - 3n - 1 - [2^{n - 1} - 3(n - 1) - 1] = 2^{n - 1} - 3$,又当$n = 1$时,$a_{1} = S_{1} = -2$满足上式,故$a_{n} = 2^{n - 1} - 3$.若选②:由$a_{n + 1} = 2a_{n} + 3$,易得$a_{n + 1} + 3 = 2(a_{n} + 3)$,又$a_{1} = -2$,于是数列$\{a_{n} + 3\}$是以$a_{1} + 3 = 1$为首项,$2$为公比的等比数列,所以$a_{n} + 3 = 2^{n - 1}$,所以$a_{n} = 2^{n - 1} - 3$.(ⅱ)由(ⅰ)得$b_{n} = n · 2^{n - 1}$,从而$T_{n} = 1 × 2^{0} + 2 × 2^{1} + 3 × 2^{2} + ·s + n · 2^{n - 1}$,$2T_{n} = 1 × 2^{1} + 2 × 2^{2} + 3 × 2^{3} + ·s + n · 2^{n}$,作差得$-T_{n} = 2^{0} + 2^{1} + 2^{2} + ·s + 2^{n - 1} - n · 2^{n} = \frac{1 - 2^{n}}{1 - 2} - n · 2^{n} = (1 - n)2^{n} - 1$,于是$T_{n} = (n - 1)2^{n} + 1$.
(1)解 ①因为$S_{n} = 2a_{n} -2$,当$n = 1$时,$S_{1} = 2a_{1} - 2$,解得$a_{1} = 2$,当$n \geq 2$时,$S_{n - 1} = 2a_{n - 1} - 2$,所以$a_{n} = S_{n} - S_{n - 1} = (2a_{n} - 2) - (2a_{n - 1} - 2) = 2a_{n} - 2a_{n - 1}$,即$a_{n} = 2a_{n - 1}(n \geq 2)$.所以数列$\{a_{n}\}$是首项为$2$,公比为$2$的等比数列,故$a_{n} = 2 × 2^{n - 1} = 2^{n}$.②由①知$a_{n} = 2^{n}$,则$b_{n} = \frac{1 + \log_{2}a_{n}}{a_{n}} = \frac{1 + \log_{2}2^{n}}{2^{n}} = \frac{n + 1}{2^{n}}$,所以$T_{n} = \frac{2}{2} + \frac{3}{2^{2}} + \frac{4}{2^{3}} + ·s + \frac{n + 1}{2^{n}}$ ①$\frac{1}{2}T_{n} = \frac{2}{2^{2}} + \frac{3}{2^{3}} + ·s + \frac{n}{2^{n}} + \frac{n + 1}{2^{n + 1}}$,②①$-$②得$\frac{1}{2}T_{n} = 1 + (\frac{1}{2^{2}} + \frac{1}{2^{3}} + ·s + \frac{1}{2^{n}}) - \frac{n + 1}{2^{n + 1}} = 1 + \frac{\frac{1}{2^{2}}(1 - \frac{1}{2^{n - 1}})}{1 - \frac{1}{2}} - \frac{n + 1}{2^{n + 1}} = 1 + \frac{1}{2} × \frac{1 - \frac{1}{2^{n - 1}}}{\frac{1}{2}} - \frac{n + 1}{2^{n + 1}} = \frac{3}{2} - \frac{n + 3}{2^{n + 1}}$.所以数列$\{b_{n}\}$的前$n$项和$T_{n} = 3 - \frac{n + 3}{2^{n}}$.
(2)解 (ⅰ)若选①:因为$S_{n} = 2^{n} - 3n - 1$,所以当$n \geq 2$时,$a_{n} = S_{n} - S_{n - 1} = 2^{n} - 3n - 1 - [2^{n - 1} - 3(n - 1) - 1] = 2^{n - 1} - 3$,又当$n = 1$时,$a_{1} = S_{1} = -2$满足上式,故$a_{n} = 2^{n - 1} - 3$.若选②:由$a_{n + 1} = 2a_{n} + 3$,易得$a_{n + 1} + 3 = 2(a_{n} + 3)$,又$a_{1} = -2$,于是数列$\{a_{n} + 3\}$是以$a_{1} + 3 = 1$为首项,$2$为公比的等比数列,所以$a_{n} + 3 = 2^{n - 1}$,所以$a_{n} = 2^{n - 1} - 3$.(ⅱ)由(ⅰ)得$b_{n} = n · 2^{n - 1}$,从而$T_{n} = 1 × 2^{0} + 2 × 2^{1} + 3 × 2^{2} + ·s + n · 2^{n - 1}$,$2T_{n} = 1 × 2^{1} + 2 × 2^{2} + 3 × 2^{3} + ·s + n · 2^{n}$,作差得$-T_{n} = 2^{0} + 2^{1} + 2^{2} + ·s + 2^{n - 1} - n · 2^{n} = \frac{1 - 2^{n}}{1 - 2} - n · 2^{n} = (1 - n)2^{n} - 1$,于是$T_{n} = (n - 1)2^{n} + 1$.
例 3 在①$ S_{3}=6 $,$ S_{5}=15 $;②公差为 1,且$ a_{2} $,$ a_{4} $,$ a_{8} $成等比数列;③$ a_{1}=1 $,$ a_{2}+a_{3}+a_{5}+a_{6}=16 $这三个条件中任选一个,补充在下面问题中,并给出解答.
问题:已知等差数列$\{ a_{n}\}$的前 $ n $ 项和为 $ S_{n} $,且满足.
(1)求数列$\{ a_{n}\}$的通项公式;
(2)令$ c_{n}=[\lg a_{n}] $,其中$[x]$表示不超过 $ x $ 的最大整数,求$ c_{1}+c_{2}+·s +c_{2024} $.
注:如果选择多个条件分别解答,按第一个解答计分.
反思感悟:
问题:已知等差数列$\{ a_{n}\}$的前 $ n $ 项和为 $ S_{n} $,且满足.
(1)求数列$\{ a_{n}\}$的通项公式;
(2)令$ c_{n}=[\lg a_{n}] $,其中$[x]$表示不超过 $ x $ 的最大整数,求$ c_{1}+c_{2}+·s +c_{2024} $.
注:如果选择多个条件分别解答,按第一个解答计分.
反思感悟:
答案:
(1)选①,设等差数列$\{a_{n}\}$的公差为$d$,因为$S_{3} = 6, S_{5} = 15$,所以$\begin{cases} 3a_{1} + 3d = 6, \\ 5a_{1} + 10d = 15, \end{cases}$解得$a_{1} = d = 1$,所以$a_{n} = a_{1} + (n - 1)d = n$.选②,因为等差数列$\{a_{n}\}$的公差为$1$,且$a_{2}, a_{4}, a_{8}$成等比数列,所以$a_{2}a_{8} = a_{4}^{2}$,即$(a_{1} + 1)(a_{1} + 7) = (a_{1} + 3)^{2}$,解得$a_{1} = 1$,所以$a_{n} = a_{1} + (n - 1)d = n$.选③,因为等差数列$\{a_{n}\}$中,$a_{1} = 1$,$a_{2} + a_{3} + a_{5} + a_{6} = 16$,所以$4a_{1} + 12d = 16$,即$4 + 12d = 16$,解得$d = 1$,所以$a_{n} = a_{1} + (n - 1)d = n$.
(2)由
(1)知$c_{n} = [\lg a_{n}] = [\lg n]$,因为$c_{1} = [\lg 1] = 0, c_{10} = [\lg 10] = 1$,$c_{100} = [\lg 100] = 2, c_{1000} = [\lg 1000] = 3$,所以当$1 \leq n \leq 9$时,$c_{n} = 0$,当$10 \leq n \leq 99$时,$c_{n} = 1$,当$100 \leq n \leq 999$时,$c_{n} = 2$,当$1000 \leq n \leq 2024$时,$c_{n} = 3$,所以$c_{1} + c_{2} + ·s + c_{2024} = 0 + 90 × 1 + 900 × 2 + (2024 - 999) × 3 = 4965$.
(1)选①,设等差数列$\{a_{n}\}$的公差为$d$,因为$S_{3} = 6, S_{5} = 15$,所以$\begin{cases} 3a_{1} + 3d = 6, \\ 5a_{1} + 10d = 15, \end{cases}$解得$a_{1} = d = 1$,所以$a_{n} = a_{1} + (n - 1)d = n$.选②,因为等差数列$\{a_{n}\}$的公差为$1$,且$a_{2}, a_{4}, a_{8}$成等比数列,所以$a_{2}a_{8} = a_{4}^{2}$,即$(a_{1} + 1)(a_{1} + 7) = (a_{1} + 3)^{2}$,解得$a_{1} = 1$,所以$a_{n} = a_{1} + (n - 1)d = n$.选③,因为等差数列$\{a_{n}\}$中,$a_{1} = 1$,$a_{2} + a_{3} + a_{5} + a_{6} = 16$,所以$4a_{1} + 12d = 16$,即$4 + 12d = 16$,解得$d = 1$,所以$a_{n} = a_{1} + (n - 1)d = n$.
(2)由
(1)知$c_{n} = [\lg a_{n}] = [\lg n]$,因为$c_{1} = [\lg 1] = 0, c_{10} = [\lg 10] = 1$,$c_{100} = [\lg 100] = 2, c_{1000} = [\lg 1000] = 3$,所以当$1 \leq n \leq 9$时,$c_{n} = 0$,当$10 \leq n \leq 99$时,$c_{n} = 1$,当$100 \leq n \leq 999$时,$c_{n} = 2$,当$1000 \leq n \leq 2024$时,$c_{n} = 3$,所以$c_{1} + c_{2} + ·s + c_{2024} = 0 + 90 × 1 + 900 × 2 + (2024 - 999) × 3 = 4965$.
查看更多完整答案,请扫码查看