2026年步步高精准讲练高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年步步高精准讲练高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
已知数列 $ \{ a_n \} $ 满足 $ a_1 = 2,a_{n + 1} = \frac{2a_n}{a_n + 2} $.
(1)数列 $ \left\{ \frac{1}{a_n} \right\} $ 是否为等差数列?说明理由;
(2)求 $ a_n $.
(1)数列 $ \left\{ \frac{1}{a_n} \right\} $ 是否为等差数列?说明理由;
(2)求 $ a_n $.
答案:
解
(1)数列$\{\frac{1}{a_n}\}$是等差数列,理由如下:
因为$a_1 = 2, a_{n + 1} = \frac{2a_n}{a_n + 2}$,所以$\frac{1}{a_{n + 1}} = \frac{a_n + 2}{2a_n} = \frac{1}{2} + \frac{1}{a_n}$,所以$\frac{1}{a_{n + 1}} - \frac{1}{a_n} = \frac{1}{2}$,即数列$\{\frac{1}{a_n}\}$是首项为$\frac{1}{a_1} = \frac{1}{2}$,公差为$d = \frac{1}{2}$的等差数列.
(2)由
(1)可知$\frac{1}{a_n} = \frac{1}{a_1} + (n - 1)d = \frac{n}{2}$,所以$a_n = \frac{2}{n}, n \in N^*$.
(1)数列$\{\frac{1}{a_n}\}$是等差数列,理由如下:
因为$a_1 = 2, a_{n + 1} = \frac{2a_n}{a_n + 2}$,所以$\frac{1}{a_{n + 1}} = \frac{a_n + 2}{2a_n} = \frac{1}{2} + \frac{1}{a_n}$,所以$\frac{1}{a_{n + 1}} - \frac{1}{a_n} = \frac{1}{2}$,即数列$\{\frac{1}{a_n}\}$是首项为$\frac{1}{a_1} = \frac{1}{2}$,公差为$d = \frac{1}{2}$的等差数列.
(2)由
(1)可知$\frac{1}{a_n} = \frac{1}{a_1} + (n - 1)d = \frac{n}{2}$,所以$a_n = \frac{2}{n}, n \in N^*$.
延伸探究
将本例中的条件“$ a_1 = 2,a_{n + 1} = \frac{2a_n}{a_n + 2} $”换为“$ a_1 = 4,a_n = 4 - \frac{4}{a_{n - 1}}(n > 1) $,记 $ b_n = \frac{1}{a_n - 2} $”.
(1)试证明数列 $ \{ b_n \} $ 为等差数列;
(2)求数列 $ \{ a_n \} $ 的通项公式.
反思感悟:
将本例中的条件“$ a_1 = 2,a_{n + 1} = \frac{2a_n}{a_n + 2} $”换为“$ a_1 = 4,a_n = 4 - \frac{4}{a_{n - 1}}(n > 1) $,记 $ b_n = \frac{1}{a_n - 2} $”.
(1)试证明数列 $ \{ b_n \} $ 为等差数列;
(2)求数列 $ \{ a_n \} $ 的通项公式.
反思感悟:
答案:
(1)证明$b_{n + 1} - b_n = \frac{1}{a_{n + 1} - 2} - \frac{1}{a_n - 2} = \frac{1}{\left(4 - \frac{4}{a_n}\right) - 2} - \frac{1}{a_n - 2} = \frac{a_n}{2(a_n - 2)} - \frac{1}{a_n - 2} = \frac{1}{2}$.又$b_1 = \frac{1}{a_1 - 2} = \frac{1}{2}$,所以数列$\{b_n\}$是首项为$\frac{1}{2}$,公差为$\frac{1}{2}$的等差数列.
(2)解 由
(1)知$b_n = \frac{1}{2} + (n - 1) × \frac{1}{2} = \frac{n}{2}$.因为$b_n = \frac{1}{a_n - 2}$,所以$a_n = \frac{2}{n} + 2, n \in N^*$.
(1)证明$b_{n + 1} - b_n = \frac{1}{a_{n + 1} - 2} - \frac{1}{a_n - 2} = \frac{1}{\left(4 - \frac{4}{a_n}\right) - 2} - \frac{1}{a_n - 2} = \frac{a_n}{2(a_n - 2)} - \frac{1}{a_n - 2} = \frac{1}{2}$.又$b_1 = \frac{1}{a_1 - 2} = \frac{1}{2}$,所以数列$\{b_n\}$是首项为$\frac{1}{2}$,公差为$\frac{1}{2}$的等差数列.
(2)解 由
(1)知$b_n = \frac{1}{2} + (n - 1) × \frac{1}{2} = \frac{n}{2}$.因为$b_n = \frac{1}{a_n - 2}$,所以$a_n = \frac{2}{n} + 2, n \in N^*$.
已知数列 $ \{ a_n \} $ 满足 $ (a_{n + 1} - 1) · (a_n - 1) = 3(a_n - a_{n + 1}),a_1 = 2 $,令 $ b_n = \frac{1}{a_n - 1} $.
(1)证明:数列 $ \{ b_n \} $ 是等差数列;
(2)求数列 $ \{ a_n \} $ 的通项公式.
(1)证明:数列 $ \{ b_n \} $ 是等差数列;
(2)求数列 $ \{ a_n \} $ 的通项公式.
答案:
(1)证明 因为$\frac{1}{a_{n + 1} - 1} - \frac{1}{a_n - 1} = \frac{a_n - a_{n + 1}}{(a_{n + 1} - 1)(a_n - 1)} = \frac{1}{3}$,又$b_1 = \frac{1}{a_1 - 1} = 1$,所以$\{b_n\}$是首项为$1$,公差为$\frac{1}{3}$的等差数列.
(2)解 由
(1)知$b_n = \frac{1}{3}n + \frac{2}{3}$,所以$a_n - 1 = \frac{3}{n + 2}$,所以$a_n = \frac{n + 5}{n + 2}, n \in N^*$.
(1)证明 因为$\frac{1}{a_{n + 1} - 1} - \frac{1}{a_n - 1} = \frac{a_n - a_{n + 1}}{(a_{n + 1} - 1)(a_n - 1)} = \frac{1}{3}$,又$b_1 = \frac{1}{a_1 - 1} = 1$,所以$\{b_n\}$是首项为$1$,公差为$\frac{1}{3}$的等差数列.
(2)解 由
(1)知$b_n = \frac{1}{3}n + \frac{2}{3}$,所以$a_n - 1 = \frac{3}{n + 2}$,所以$a_n = \frac{n + 5}{n + 2}, n \in N^*$.
查看更多完整答案,请扫码查看