2026年南方凤凰台5A新考案高中数学二轮基础版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年南方凤凰台5A新考案高中数学二轮基础版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第76页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
(2)(2025·鹰潭一模)已知$(1 + 2x)^n = a_0 + a_1x + a_2x^2 + a_3x^3 + ·s + a_nx^n$,随机变量$\xi \sim N(1,\frac{1}{4})$,若$\frac{a_1}{a_2} = E(\xi)D(\xi)$,则$a_1 + a_2 + a_3 + ·s + a_n$的值为(
A.81
B.242
C.243
D.80
B
)A.81
B.242
C.243
D.80
答案:
(2) B 【解析】因为随机变量$\xi \sim N(1,\frac{1}{4})$,所以$E(\xi) = 1$,$D(\xi) = \frac{1}{4}$. 因为$(1 + 2x)^{n} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + ·s + a_{n}x^{n}$,所以$a_{1} = C_{n}^{1} · 2 = 2n$,$a_{2} = C_{n}^{2} · 2^{2} = 2n(n - 1)$,所以$\frac{a_{1}^{2}}{a_{2}} = \frac{2n}{2n(n - 1)} · \frac{1}{n - 1} = \frac{1}{4}$,解得$n = 5$. 令$f(x) = (1 + 2x)^{5} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + a_{4}x^{4} + a_{5}x^{5}$,则$f(0) = a_{0} = 1$,$f(1) = (1 + 2)^{5} = a_{0} + a_{1} + a_{2} + a_{3} + a_{4} + a_{5}$,故$a_{1} + a_{2} + a_{3} + a_{4} + a_{5} = 3^{5} - 1 = 242$.
(2) B 【解析】因为随机变量$\xi \sim N(1,\frac{1}{4})$,所以$E(\xi) = 1$,$D(\xi) = \frac{1}{4}$. 因为$(1 + 2x)^{n} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + ·s + a_{n}x^{n}$,所以$a_{1} = C_{n}^{1} · 2 = 2n$,$a_{2} = C_{n}^{2} · 2^{2} = 2n(n - 1)$,所以$\frac{a_{1}^{2}}{a_{2}} = \frac{2n}{2n(n - 1)} · \frac{1}{n - 1} = \frac{1}{4}$,解得$n = 5$. 令$f(x) = (1 + 2x)^{5} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + a_{4}x^{4} + a_{5}x^{5}$,则$f(0) = a_{0} = 1$,$f(1) = (1 + 2)^{5} = a_{0} + a_{1} + a_{2} + a_{3} + a_{4} + a_{5}$,故$a_{1} + a_{2} + a_{3} + a_{4} + a_{5} = 3^{5} - 1 = 242$.
变式 2 (1)(2025·枣庄模拟)已知$(3x + 1)^{2025} = a_0 + a_1x + a_2x^2 + ·s + a_{2025}x^{2025}$,则$\frac{4}{3}a_1 + (\frac{4}{3})^2a_2 + ·s + (\frac{4}{3})^{2025}a_{2025}$被 4 除的余数为(
A.3
B.2
C.1
D.0
D
)A.3
B.2
C.1
D.0
答案:
(1) D 【解析】令$x = 0$,得$a_{0} = 1^{2025} = 1$,令$x = \frac{4}{3}$,可得$5^{2025} = a_{0} + \frac{4}{3}a_{1} + (\frac{4}{3})^{2}a_{2} + ·s + (\frac{4}{3})^{2025}a_{2025}$,所以$\frac{4}{3}a_{1} + (\frac{4}{3})^{2}a_{2} + ·s + (\frac{4}{3})^{2025}a_{2025} = 5^{2025} - 1$. 因为$5^{2025} = (4 + 1)^{2025} = C_{2025}^{0}4^{2025} · 1^{0} + C_{2025}^{1}4^{2024} · 1^{1} + ·s + C_{2025}^{2024}4^{1} · 1^{2024} + C_{2025}^{2025}4^{0} = C_{2025}^{1}4^{2024} + C_{2025}^{2}4^{2023} + ·s + C_{2025}^{2024}4^{1} + 1$,所以$5^{2025}$被4除的余数为1,即$5^{2025} - 1$被4除的余数为0.
(1) D 【解析】令$x = 0$,得$a_{0} = 1^{2025} = 1$,令$x = \frac{4}{3}$,可得$5^{2025} = a_{0} + \frac{4}{3}a_{1} + (\frac{4}{3})^{2}a_{2} + ·s + (\frac{4}{3})^{2025}a_{2025}$,所以$\frac{4}{3}a_{1} + (\frac{4}{3})^{2}a_{2} + ·s + (\frac{4}{3})^{2025}a_{2025} = 5^{2025} - 1$. 因为$5^{2025} = (4 + 1)^{2025} = C_{2025}^{0}4^{2025} · 1^{0} + C_{2025}^{1}4^{2024} · 1^{1} + ·s + C_{2025}^{2024}4^{1} · 1^{2024} + C_{2025}^{2025}4^{0} = C_{2025}^{1}4^{2024} + C_{2025}^{2}4^{2023} + ·s + C_{2025}^{2024}4^{1} + 1$,所以$5^{2025}$被4除的余数为1,即$5^{2025} - 1$被4除的余数为0.
(2)(多选)已知$(x^2 + x + 1)^9 = a_0 + a_1x + a_2x^2 + ·s + a_{18}x^{18}$,下列说法正确的有(
A.$a_0 = 1$
B.$a_2 = 42$
C.$a_2 + a_4 + ·s + a_{18} = \frac{3^9 + 1}{2}$
D.$a_1 + 2a_2 + 3a_3 + ·s + 18a_{18} = 3^{11}$
AD
)A.$a_0 = 1$
B.$a_2 = 42$
C.$a_2 + a_4 + ·s + a_{18} = \frac{3^9 + 1}{2}$
D.$a_1 + 2a_2 + 3a_3 + ·s + 18a_{18} = 3^{11}$
答案:
(2) AD 【解析】对于A,令$x = 0$,得$a_{0} = 1$,故A正确. 对于B,$a_{2} = C_{3}^{2}C_{3}^{8} + C_{3}^{3}C_{3}^{3} = 9 + 36 = 45$,故B错误. 对于C,令$x = 1$,则$a_{0} + a_{1} + a_{2} + ·s + a_{18} = 3^{9}$;令$x = - 1$,则$a_{0} - a_{1} + a_{2} - ·s + a_{18} = 1$,两式相加得$2(a_{0} + a_{2} + ·s + a_{18}) = 3^{9} + 1$,又$a_{0} = 1$,所以$a_{2} + a_{4} + ·s + a_{18} = \frac{3^{9} + 1}{2} - 1 = \frac{3^{9} - 1}{2}$,故C错误. 对于D,因为$[(x^{2} + x + 1)^{9}]' = 9(x^{2} + x + 1)^{8}(2x + 1),(a_{0} + a_{1}x + a_{2}x^{2} + ·s + a_{18}x^{18})' = a_{1} + 2a_{2}x + ·s + 18a_{18}x^{17}$,所以$9(x^{2} + x + 1)^{8}(2x + 1) = a_{1} + 2a_{2}x + ·s + 18a_{18}x^{17}$,令$x = 1$,则$a_{1} + 2a_{2} + 3a_{3} + ·s + 18a_{18} = 9 × 3^{8} × 3 = 3^{11}$,故D正确.
(2) AD 【解析】对于A,令$x = 0$,得$a_{0} = 1$,故A正确. 对于B,$a_{2} = C_{3}^{2}C_{3}^{8} + C_{3}^{3}C_{3}^{3} = 9 + 36 = 45$,故B错误. 对于C,令$x = 1$,则$a_{0} + a_{1} + a_{2} + ·s + a_{18} = 3^{9}$;令$x = - 1$,则$a_{0} - a_{1} + a_{2} - ·s + a_{18} = 1$,两式相加得$2(a_{0} + a_{2} + ·s + a_{18}) = 3^{9} + 1$,又$a_{0} = 1$,所以$a_{2} + a_{4} + ·s + a_{18} = \frac{3^{9} + 1}{2} - 1 = \frac{3^{9} - 1}{2}$,故C错误. 对于D,因为$[(x^{2} + x + 1)^{9}]' = 9(x^{2} + x + 1)^{8}(2x + 1),(a_{0} + a_{1}x + a_{2}x^{2} + ·s + a_{18}x^{18})' = a_{1} + 2a_{2}x + ·s + 18a_{18}x^{17}$,所以$9(x^{2} + x + 1)^{8}(2x + 1) = a_{1} + 2a_{2}x + ·s + 18a_{18}x^{17}$,令$x = 1$,则$a_{1} + 2a_{2} + 3a_{3} + ·s + 18a_{18} = 9 × 3^{8} × 3 = 3^{11}$,故D正确.
例 3 已知$(\sqrt{x} - \frac{2}{x})^n$的展开式中只有第 5 项的二项式系数最大,则该展开式中各项系数的最小值为(
A.-448
B.-1024
C.-1792
D.-5376
C
)A.-448
B.-1024
C.-1792
D.-5376
答案:
C 【解析】因为展开式中只有第5项的二项式系数最大,所以$n = 8$,则展开式的通项$T_{r + 1} = C_{8}^{r}(\sqrt{x})^{8 - r} · ( - \frac{2}{x})^{r} = ( - 2)^{r}C_{8}^{r}x^{\frac{8 - 3r}{2}},r = 0,1,·s,8$,于是该展开式中各项系数$a_{r} = ( - 2)^{r}C_{8}^{r},r = 0,1,·s,8$. 当系数取最小值时,$r$为奇数且$\begin{cases} ( - 2)^{r}C_{8}^{r} \leq ( - 2)^{r + 2}C_{8}^{r + 2} \\ ( - 2)^{r}C_{8}^{r} \leq ( - 2)^{r - 2}C_{8}^{r - 2} \end{cases}$即$\begin{cases} r \geq \frac{29}{4} \\ r \leq \frac{33}{4} \end{cases}$解得$r = 5$,所以最小值为$a_{5} = ( - 2)^{5}C_{8}^{5} = - 1792$。
变式 3 (2024·全国甲卷)$(\frac{1}{3} + x)^{10}$的展开式中,各项系数的最大值是
5
。
答案:
5【解析】展开式的通项$T_{r + 1} = C_{10}^{r}(\frac{1}{3})^{10 - r}x^{r},0 \leq r \leq 10$且$r \in Z$. 设展开式中第$r + 1$项系数最大,则$\begin{cases} C_{10}^{r}(\frac{1}{3})^{10 - r} \geq C_{10}^{r + 1}(\frac{1}{3})^{9 - r} \\ C_{10}^{r}(\frac{1}{3})^{10 - r} \geq C_{10}^{r - 1}(\frac{1}{3})^{11 - r} \end{cases}$可得$\begin{cases} r \geq \frac{29}{4} \\ r \leq \frac{33}{4} \end{cases}$,又$r \in Z$,所以$r = 8$. 故展开式中系数最大的项是第9项,且该项系数为$C_{10}^{8}(\frac{1}{3})^{2} = 5$。
查看更多完整答案,请扫码查看