2026年南方凤凰台5A新考案高中数学二轮基础版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年南方凤凰台5A新考案高中数学二轮基础版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第30页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
例 1 (1)已知数列$\{ a_{n}\}$满足$a_{n}a_{n + 4}=-\frac{1}{4}$,$a_{4}=\frac{1}{2}$,则$a_{200}=$(
A.$\frac{1}{2}$
B.$-\frac{1}{2}$
C.$0$
D.$-\frac{1}{4}$
B
)A.$\frac{1}{2}$
B.$-\frac{1}{2}$
C.$0$
D.$-\frac{1}{4}$
答案:
例1
(1) B 【解析】由$a_{n}a_{n+4} = - \frac{1}{4},$得$a_{n} \neq 0$且$a_{n+4}a_{n+8} = - \frac{1}{4},$所以$a_{n+8}a_{n+4} = a_{n}a_{n+4},$故$a_{n+8} = a_{n},$所以$\{a_{n}\}$是以8为一个周期的周期数列.因为$a_{4} = \frac{1}{2},$$a_{4}a_{8} = - \frac{1}{4},$所以$a_{8} = - \frac{1}{2},$所以$a_{200} = a_{25 × 8} = a_{8} = - \frac{1}{2}.$
(1) B 【解析】由$a_{n}a_{n+4} = - \frac{1}{4},$得$a_{n} \neq 0$且$a_{n+4}a_{n+8} = - \frac{1}{4},$所以$a_{n+8}a_{n+4} = a_{n}a_{n+4},$故$a_{n+8} = a_{n},$所以$\{a_{n}\}$是以8为一个周期的周期数列.因为$a_{4} = \frac{1}{2},$$a_{4}a_{8} = - \frac{1}{4},$所以$a_{8} = - \frac{1}{2},$所以$a_{200} = a_{25 × 8} = a_{8} = - \frac{1}{2}.$
(2)(2025·湖北二模)若数列$\{ a_{n}\}$满足$a_{1}=2$,$a_{n + 1}=\frac{1 + a_{n}}{1 - a_{n}}(n\in \mathbf{N}^{*})$,则该数列的前$2025$项的乘积是(
A.$-2$
B.$-1$
C.$2$
D.$1$
C
)A.$-2$
B.$-1$
C.$2$
D.$1$
答案:
例1
(2) C 【解析】因为数列$\{a_{n}\}$满足$a_{1} = 2,$$a_{n+1} = \frac{1 + a_{n}}{1 - a_{n}}(n \in \mathbf{N}^*),$所以$a_{2} = \frac{1 + a_{1}}{1 - a_{1}} = \frac{1 + 2}{1 - 2} = - 3,$同理可得$a_{3} = - \frac{1}{2},$$a_{4} = \frac{1}{3},$$a_{5} = 2,$·s,所以数列$\{a_{n}\}$的周期为4,即$a_{n+4} = a_{n},$且$a_{1} · a_{2} · a_{3} · a_{4} = 1.$而2025 = 506 × 4 + 1,所以该数列的前2025项的乘积是$a_{1} · a_{2} · a_{3} · a_{4} · ·s · a_{2025} = 1^{506} × a_{1} = 2.$
(2) C 【解析】因为数列$\{a_{n}\}$满足$a_{1} = 2,$$a_{n+1} = \frac{1 + a_{n}}{1 - a_{n}}(n \in \mathbf{N}^*),$所以$a_{2} = \frac{1 + a_{1}}{1 - a_{1}} = \frac{1 + 2}{1 - 2} = - 3,$同理可得$a_{3} = - \frac{1}{2},$$a_{4} = \frac{1}{3},$$a_{5} = 2,$·s,所以数列$\{a_{n}\}$的周期为4,即$a_{n+4} = a_{n},$且$a_{1} · a_{2} · a_{3} · a_{4} = 1.$而2025 = 506 × 4 + 1,所以该数列的前2025项的乘积是$a_{1} · a_{2} · a_{3} · a_{4} · ·s · a_{2025} = 1^{506} × a_{1} = 2.$
变式 1 (2025·湖北一模)
已知数列$\{ a_{n}\}$满足:①任意相邻两项的乘积不等于$1$;②任意连续三项的乘积等于这三项的和;③$a_{1}=2$,$a_{2}=3$。记数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,则$S_{2025}-S_{2012}$的值为(
A.$27$
B.$26$
C.$25$
D.$24$
已知数列$\{ a_{n}\}$满足:①任意相邻两项的乘积不等于$1$;②任意连续三项的乘积等于这三项的和;③$a_{1}=2$,$a_{2}=3$。记数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,则$S_{2025}-S_{2012}$的值为(
C
)A.$27$
B.$26$
C.$25$
D.$24$
答案:
变式1 C 【解析】依题意$a_{n}a_{n+1} \neq 1$且$a_{n}a_{n+1}a_{n+2} = a_{n} + a_{n+1} + a_{n+2},$则$a_{n+1}a_{n+2}a_{n+3} = a_{n+1} + a_{n+2} + a_{n+3},$两式相减得$a_{n+1}a_{n+2}(a_{n} - a_{n+3}) = a_{n} - a_{n+3},$故$(a_{n+1}a_{n+2} - 1)(a_{n} - a_{n+3}) = 0.$因为$a_{n+1}a_{n+2} \neq 1,$所以$a_{n} - a_{n+3} = 0,$故$a_{n} = a_{n+3},$故数列$\{a_{n}\}$是周期为3的数列.由$a_{1} = 2,$$a_{2} = 3$及$a_{1}a_{2}a_{3} = a_{1} + a_{2} + a_{3},$可得$a_{3} = 1,$所以$S_{2025} - S_{2012} = a_{2013} + a_{2014} + ·s + a_{2025} = (a_{1} + a_{2} + a_{3}) × 4 + a_{3} = (2 + 3 + 1) × 4 + 1 = 25.$
例 2 (1)(2025·重庆期初)已知等差数列$\{ a_{n}\}$的公差$d\lt0$,$a_{5}a_{7}=35$,$a_{4}+a_{8}=12$,记该数列的前$n$项和为$S_{n}$。若数列$\{ S_{n}+\lambda n\}$是递减数列,则实数$\lambda$的取值范围是(
A.$(-\infty,-\frac{21}{2}]$
B.$(-\infty,-\frac{21}{2})$
C.$(-\infty,-10]$
D.$(-\infty,-10)$
D
)A.$(-\infty,-\frac{21}{2}]$
B.$(-\infty,-\frac{21}{2})$
C.$(-\infty,-10]$
D.$(-\infty,-10)$
答案:
例2
(1) D 【解析】在等差数列$\{a_{n}\}$中,$a_{5} + a_{7} = a_{4} + a_{8} = 12,$$a_{5}a_{7} = 35,$由公差d < 0,得a_{5} >$ a_{7},$解得$a_{5} = 7,$$a_{7} = 5,$$d = \frac{a_{7} - a_{5}}{7 - 5} = - 1,$所以$a_{n} = a_{5} + (n - 5)d = - n + 12,$$S_{n} = \frac{11 + (-n + 12)}{2} · n = - \frac{1}{2}n^{2} + \frac{23}{2}n,$$S_{n} + \lambda n = - \frac{1}{2}n^{2} + (\lambda + \frac{23}{2})n.$由数列$\{S_{n} + \lambda n\}$是递减数列,得$ - \frac{1}{2}(n + 1)^{2} + (\lambda + \frac{23}{2})(n + 1) < - \frac{1}{2}n^{2} + (\lambda + \frac{23}{2})n$恒成立,整理得$\lambda < n -$
值范围是$(- \infty, - 10).$
(1) D 【解析】在等差数列$\{a_{n}\}$中,$a_{5} + a_{7} = a_{4} + a_{8} = 12,$$a_{5}a_{7} = 35,$由公差d < 0,得a_{5} >$ a_{7},$解得$a_{5} = 7,$$a_{7} = 5,$$d = \frac{a_{7} - a_{5}}{7 - 5} = - 1,$所以$a_{n} = a_{5} + (n - 5)d = - n + 12,$$S_{n} = \frac{11 + (-n + 12)}{2} · n = - \frac{1}{2}n^{2} + \frac{23}{2}n,$$S_{n} + \lambda n = - \frac{1}{2}n^{2} + (\lambda + \frac{23}{2})n.$由数列$\{S_{n} + \lambda n\}$是递减数列,得$ - \frac{1}{2}(n + 1)^{2} + (\lambda + \frac{23}{2})(n + 1) < - \frac{1}{2}n^{2} + (\lambda + \frac{23}{2})n$恒成立,整理得$\lambda < n -$
值范围是$(- \infty, - 10).$
(2)已知数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,$a_{1}=1$,$a_{n + 1}-S_{n}=1$,$b_{n}=\frac{4n^{2}}{a_{n}}$,则$b_{n}$的最大值为(
A.$4$
B.$9$
C.$10$
D.$12$
B
)A.$4$
B.$9$
C.$10$
D.$12$
答案:
例2
(2) B 【解析】当n = 1时,$a_{2} = 1 + S_{1} = 1 + a_{1} = 2;$当$n \geq 2$时,$a_{n} = 1 + S_{n - 1},$所以$a_{n + 1} - a_{n} = (1 + S_{n}) - (1 + S_{n - 1}) = S_{n} - S_{n - 1} = a_{n},$即$a_{n + 1} = 2a_{n}.$又$a_{2} = 2a_{1},$所以数列$\{a_{n}\}$是以1为首项,2为公比的等比数列,所以$a_{n} = 2^{n - 1},$所以$b_{n} = \frac{4n^{2}}{2^{n - 1}}.$令$b_{n + 1} - b_{n} > 0,$得$\frac{4(n + 1)^{2}}{2^{n}} > \frac{4n^{2}}{2^{n - 1}},$即$2n + 1 > n^{2},$则n = 1或n = 2.所以在数列$\{b_{n}\}$中,$b_{1} $< b_{2} < b_{3} >$ b_{4} > ·s,$即数列$\{b_{n}\}$中,$b_{3}$最大,且$b_{3} = \frac{4 × 3^{2}}{2^{2}} = 9.$
(2) B 【解析】当n = 1时,$a_{2} = 1 + S_{1} = 1 + a_{1} = 2;$当$n \geq 2$时,$a_{n} = 1 + S_{n - 1},$所以$a_{n + 1} - a_{n} = (1 + S_{n}) - (1 + S_{n - 1}) = S_{n} - S_{n - 1} = a_{n},$即$a_{n + 1} = 2a_{n}.$又$a_{2} = 2a_{1},$所以数列$\{a_{n}\}$是以1为首项,2为公比的等比数列,所以$a_{n} = 2^{n - 1},$所以$b_{n} = \frac{4n^{2}}{2^{n - 1}}.$令$b_{n + 1} - b_{n} > 0,$得$\frac{4(n + 1)^{2}}{2^{n}} > \frac{4n^{2}}{2^{n - 1}},$即$2n + 1 > n^{2},$则n = 1或n = 2.所以在数列$\{b_{n}\}$中,$b_{1} $< b_{2} < b_{3} >$ b_{4} > ·s,$即数列$\{b_{n}\}$中,$b_{3}$最大,且$b_{3} = \frac{4 × 3^{2}}{2^{2}} = 9.$
查看更多完整答案,请扫码查看