2026年南方凤凰台5A新考案高中数学二轮基础版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年南方凤凰台5A新考案高中数学二轮基础版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第28页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
变式2 (2025·合肥二模)已知$\{ a_{n}\}$是等差数列,$\{ b_{n}\}$是等比数列,且$a_{1} = b_{1} = 3$,$a_{2} + a_{4} = 2b_{2}$,$a_{1}a_{3} = b_{3}$。
(1)求数列$\{ a_{n}\}$和$\{ b_{n}\}$的通项公式;
(2)求数列$\{\frac{a_{n}}{b_{n}}\}$的前$n$项和。
(1)求数列$\{ a_{n}\}$和$\{ b_{n}\}$的通项公式;
(2)求数列$\{\frac{a_{n}}{b_{n}}\}$的前$n$项和。
答案:
变式2 【解答】
(1)设$\{a_n\}$的公差为$d$,$\{b_n\}$的公比为$q(q\neq0)$.由$a_2+a_4=2b_2$,得$2a_1+4d=2b_1q$,则$6+4d=6q$.由$a_1a_3=b_3$,得$3(3+2d)=3q^2$.联立$\begin{cases}6+4d=6q,\\3(3+2d)=3q^2,\end{cases}$解得$\begin{cases}d=3,\\q=3\end{cases}$或$\begin{cases}d=-\frac{3}{2},\\q=0\end{cases}$(舍去).故$a_n=3+3(n-1)=3n$,$b_n=3·3^{n-1}=3^n$.
(2)由
(1)知$\frac{a_n}{b_n}=\frac{3n}{3^n}=\frac{n}{3^{n-1}}$,设数列$\left\{\frac{a_n}{b_n}\right\}$的前$n$项和为$S_n$,则$S_n=\frac{1}{3^0}+\frac{2}{3^1}+\frac{3}{3^2}+·s+\frac{n}{3^{n-1}}$①,$\frac{1}{3}S_n=\frac{1}{3^1}+\frac{2}{3^2}+·s+\frac{n}{3^n}$②.①-②得$\frac{2}{3}S_n=1+\frac{1}{3}+\frac{1}{3^2}+·s+\frac{1}{3^{n-1}}-\frac{n}{3^n}=\frac{1-\left(\frac{1}{3}\right)^n}{1-\frac{1}{3}}-\frac{n}{3^n}=\frac{3}{2}\left(1-\frac{1}{3^n}\right)-\frac{n}{3^n}=\frac{3}{2}-\frac{2n+3}{2×3^n}$,所以$S_n=\frac{9}{4}-\frac{2n+3}{4×3^{n-1}}$.
(1)设$\{a_n\}$的公差为$d$,$\{b_n\}$的公比为$q(q\neq0)$.由$a_2+a_4=2b_2$,得$2a_1+4d=2b_1q$,则$6+4d=6q$.由$a_1a_3=b_3$,得$3(3+2d)=3q^2$.联立$\begin{cases}6+4d=6q,\\3(3+2d)=3q^2,\end{cases}$解得$\begin{cases}d=3,\\q=3\end{cases}$或$\begin{cases}d=-\frac{3}{2},\\q=0\end{cases}$(舍去).故$a_n=3+3(n-1)=3n$,$b_n=3·3^{n-1}=3^n$.
(2)由
(1)知$\frac{a_n}{b_n}=\frac{3n}{3^n}=\frac{n}{3^{n-1}}$,设数列$\left\{\frac{a_n}{b_n}\right\}$的前$n$项和为$S_n$,则$S_n=\frac{1}{3^0}+\frac{2}{3^1}+\frac{3}{3^2}+·s+\frac{n}{3^{n-1}}$①,$\frac{1}{3}S_n=\frac{1}{3^1}+\frac{2}{3^2}+·s+\frac{n}{3^n}$②.①-②得$\frac{2}{3}S_n=1+\frac{1}{3}+\frac{1}{3^2}+·s+\frac{1}{3^{n-1}}-\frac{n}{3^n}=\frac{1-\left(\frac{1}{3}\right)^n}{1-\frac{1}{3}}-\frac{n}{3^n}=\frac{3}{2}\left(1-\frac{1}{3^n}\right)-\frac{n}{3^n}=\frac{3}{2}-\frac{2n+3}{2×3^n}$,所以$S_n=\frac{9}{4}-\frac{2n+3}{4×3^{n-1}}$.
例3 已知数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,$a_{1} = 2$,$(n - 2)S_{n + 1} + 2a_{n + 1} = nS_{n}$,$n \in \mathbf{N}^{*}$。
(1)求数列$\{ a_{n}\}$的通项公式;
(2)求证:$\frac{1}{a_{1}^{2}} + \frac{1}{a_{2}^{2}} + ·s + \frac{1}{a_{n}^{2}} < \frac{7}{16}$。
(1)求数列$\{ a_{n}\}$的通项公式;
(2)求证:$\frac{1}{a_{1}^{2}} + \frac{1}{a_{2}^{2}} + ·s + \frac{1}{a_{n}^{2}} < \frac{7}{16}$。
答案:
例3 【解答】
(1)由$(n - 2)S_{n + 1} + 2a_{n + 1} = nS_{n}$,得$(n - 2)(S_n + a_{n + 1}) + 2a_{n + 1} = nS_n$,化简得$(n - 2)S_n + (n - 2)a_{n + 1} + 2a_{n + 1} = nS_n$,即$(n - 2)S_n + na_{n + 1} = nS_n$,所以$na_{n + 1} = 2S_n$,即$S_n = \frac{n}{2}a_{n + 1}$.当$n \geq 2$时,$S_{n - 1} = \frac{n - 1}{2}a_n$,两式相减得$a_n = \frac{n}{2}a_{n + 1} - \frac{n - 1}{2}a_n$,整理得$\frac{a_{n + 1}}{a_n} = \frac{n + 1}{n}$.又$a_1 = 2$,当$n = 1$时,$S_1 = \frac{1}{2}a_2$,即$a_2 = 2a_1 = 4$,所以$a_n = a_2 · \frac{a_3}{a_2} · \frac{a_4}{a_3} ·s \frac{a_n}{a_{n - 1}} = 4 · \frac{3}{2} · \frac{4}{3} ·s \frac{n}{n - 1} = 2n$,当$n = 1$时,$a_1 = 2$也满足,故$a_n = 2n$.
(2)由
(1)知$\frac{1}{a_n^2} = \frac{1}{4n^2}$.当$n = 1$时,$\frac{1}{a_1^2} = \frac{1}{4} < \frac{7}{16}$;当$n = 2$时,$\frac{1}{4} + \frac{1}{16} = \frac{5}{16} < \frac{7}{16}$;当$n \geq 3$时,$\frac{1}{n^2} < \frac{1}{(n - 1)n} = \frac{1}{n - 1} - \frac{1}{n}$,所以$\frac{1}{a_1^2} + \frac{1}{a_2^2} + ·s + \frac{1}{a_n^2} = \frac{1}{4} + \frac{1}{16} + \frac{1}{4}\left(\frac{1}{3^2} + ·s + \frac{1}{n^2}\right) < \frac{5}{16} + \frac{1}{4}\left(\frac{1}{2 × 3} + ·s + \frac{1}{(n - 1)n}\right) = \frac{5}{16} + \frac{1}{4}\left(\frac{1}{2} - \frac{1}{n}\right) = \frac{5}{16} + \frac{1}{8} - \frac{1}{4n} = \frac{7}{16} - \frac{1}{4n} < \frac{7}{16}$.综上,$\frac{1}{a_1^2} + \frac{1}{a_2^2} + ·s + \frac{1}{a_n^2} < \frac{7}{16}$.
(1)由$(n - 2)S_{n + 1} + 2a_{n + 1} = nS_{n}$,得$(n - 2)(S_n + a_{n + 1}) + 2a_{n + 1} = nS_n$,化简得$(n - 2)S_n + (n - 2)a_{n + 1} + 2a_{n + 1} = nS_n$,即$(n - 2)S_n + na_{n + 1} = nS_n$,所以$na_{n + 1} = 2S_n$,即$S_n = \frac{n}{2}a_{n + 1}$.当$n \geq 2$时,$S_{n - 1} = \frac{n - 1}{2}a_n$,两式相减得$a_n = \frac{n}{2}a_{n + 1} - \frac{n - 1}{2}a_n$,整理得$\frac{a_{n + 1}}{a_n} = \frac{n + 1}{n}$.又$a_1 = 2$,当$n = 1$时,$S_1 = \frac{1}{2}a_2$,即$a_2 = 2a_1 = 4$,所以$a_n = a_2 · \frac{a_3}{a_2} · \frac{a_4}{a_3} ·s \frac{a_n}{a_{n - 1}} = 4 · \frac{3}{2} · \frac{4}{3} ·s \frac{n}{n - 1} = 2n$,当$n = 1$时,$a_1 = 2$也满足,故$a_n = 2n$.
(2)由
(1)知$\frac{1}{a_n^2} = \frac{1}{4n^2}$.当$n = 1$时,$\frac{1}{a_1^2} = \frac{1}{4} < \frac{7}{16}$;当$n = 2$时,$\frac{1}{4} + \frac{1}{16} = \frac{5}{16} < \frac{7}{16}$;当$n \geq 3$时,$\frac{1}{n^2} < \frac{1}{(n - 1)n} = \frac{1}{n - 1} - \frac{1}{n}$,所以$\frac{1}{a_1^2} + \frac{1}{a_2^2} + ·s + \frac{1}{a_n^2} = \frac{1}{4} + \frac{1}{16} + \frac{1}{4}\left(\frac{1}{3^2} + ·s + \frac{1}{n^2}\right) < \frac{5}{16} + \frac{1}{4}\left(\frac{1}{2 × 3} + ·s + \frac{1}{(n - 1)n}\right) = \frac{5}{16} + \frac{1}{4}\left(\frac{1}{2} - \frac{1}{n}\right) = \frac{5}{16} + \frac{1}{8} - \frac{1}{4n} = \frac{7}{16} - \frac{1}{4n} < \frac{7}{16}$.综上,$\frac{1}{a_1^2} + \frac{1}{a_2^2} + ·s + \frac{1}{a_n^2} < \frac{7}{16}$.
查看更多完整答案,请扫码查看