9. 如图,$∠AOB= 2∠COD$,则下列结论中成立的是(

A.$\widehat {AB}>2\widehat {CD}$
B.$\widehat {AB}= 2\widehat {CD}$
C.$\widehat {AB}<2\widehat {CD}$
D.不能确定$\widehat {AB}与2\widehat {CD}$的大小关系
B
)A.$\widehat {AB}>2\widehat {CD}$
B.$\widehat {AB}= 2\widehat {CD}$
C.$\widehat {AB}<2\widehat {CD}$
D.不能确定$\widehat {AB}与2\widehat {CD}$的大小关系
答案:
B
10. 如图,半径为$5的\odot A$中,弦$BC$,$ED所对的圆心角分别是∠BAC$,$∠EAD$,已知$DE= 6$,$∠BAC+∠EAD= 180^{\circ }$,则圆心$A到弦BC$的距离等于____
3
.
答案:
3
11. 如图,已知在$\odot O$中,弦$AB与半径OE$,$OF交于点C$,$D$,$AC= BD$,求证:
(1)$OC= OD$.
(2)$\widehat {AE}= \widehat {BF}$.

(1)$OC= OD$.
(2)$\widehat {AE}= \widehat {BF}$.
答案:
证明:
(1)如图,连结OA,OB.
∵OA = OB,
∴∠OAC = ∠OBD.在△OAC与△OBD中,$\left\{\begin{array}{l}OA = OB,\\ \angle OAC = \angle OBD,\\ AC = BD,\end{array}\right.$
∴△OAC≌△OBD(SAS).
∴OC = OD.
(2)
∵△OAC≌△OBD,
∴∠AOC = ∠BOD,
∴$\overset{\frown}{AE}=\overset{\frown}{BF}$.
(1)如图,连结OA,OB.
∵OA = OB,
∴∠OAC = ∠OBD.在△OAC与△OBD中,$\left\{\begin{array}{l}OA = OB,\\ \angle OAC = \angle OBD,\\ AC = BD,\end{array}\right.$
∴△OAC≌△OBD(SAS).
∴OC = OD.
(2)
∵△OAC≌△OBD,
∴∠AOC = ∠BOD,
∴$\overset{\frown}{AE}=\overset{\frown}{BF}$.
12. 如图,在$\odot O$中,$AB$,$DE为\odot O$的直径,$C是\odot O$上一点,且$\widehat {AD}= \widehat {CE}$.
(1)$\widehat {BE}与\widehat {CE}$有什么数量关系?为什么?
(2)若$∠BOE= 60^{\circ }$,则四边形$OACE$是什么特殊的四边形?请说明理由.

(1)$\widehat {BE}与\widehat {CE}$有什么数量关系?为什么?
(2)若$∠BOE= 60^{\circ }$,则四边形$OACE$是什么特殊的四边形?请说明理由.
答案:
解:
(1)$\overset{\frown}{BE}=\overset{\frown}{CE}$.理由:
∵AB,DE是⊙O的直径,
∴∠AOD = ∠BOE,
∴$\overset{\frown}{AD}=\overset{\frown}{BE}$.
∵$\overset{\frown}{AD}=\overset{\frown}{CE}$,
∴$\overset{\frown}{BE}=\overset{\frown}{CE}$.
(2)四边形OACE是菱形.理由:连结OC,如图.
∵∠BOE = 60°,$\overset{\frown}{BE}=\overset{\frown}{CE}$,
∴∠COE = 60°.
∵OC = OE,
∴△COE是等边三角形.
∵∠AOC = 180° - 60° - 60° = 60°,OA = OC,
∴△AOC是等边三角形,
∴OE = CE = OA = AC = OC,
∴四边形OACE是菱形.
(1)$\overset{\frown}{BE}=\overset{\frown}{CE}$.理由:
∵AB,DE是⊙O的直径,
∴∠AOD = ∠BOE,
∴$\overset{\frown}{AD}=\overset{\frown}{BE}$.
∵$\overset{\frown}{AD}=\overset{\frown}{CE}$,
∴$\overset{\frown}{BE}=\overset{\frown}{CE}$.
(2)四边形OACE是菱形.理由:连结OC,如图.
∵∠BOE = 60°,$\overset{\frown}{BE}=\overset{\frown}{CE}$,
∴∠COE = 60°.
∵OC = OE,
∴△COE是等边三角形.
∵∠AOC = 180° - 60° - 60° = 60°,OA = OC,
∴△AOC是等边三角形,
∴OE = CE = OA = AC = OC,
∴四边形OACE是菱形.
13. 如图,过$\odot O的直径AB上两点M$,$N$,分别作弦$CD$,$EF$,$CD// EF$,$AC= BF$.求证:
(1)$\widehat {BC}= \widehat {AF}$.
(2)$AM= BN$.

(1)$\widehat {BC}= \widehat {AF}$.
(2)$AM= BN$.
答案:
证明:
(1)如图,连结OC,OF,则OC = OA = OB = OF.又
∵AC = BF,
∴△AOC≌△BOF(SSS),
∴∠COA = ∠BOF,
∴∠COB = ∠FOA.
∴$\overset{\frown}{BC}=\overset{\frown}{AF}$.
(2)
∵∠COA = ∠BOF,OC = OF = OA = OB,
∴∠CAB = ∠OCA = ∠BFO = ∠ABF.
∵CD//EF,
∴∠AMC = ∠ANE;又
∵∠BNF = ∠ANE,
∴∠AMC = ∠BNF.在△AMC和△BNF中,$\left\{\begin{array}{l}\angle AMC = \angle BNF,\\ \angle CAB = \angle ABF,\\ AC = BF,\end{array}\right.$
∴△AMC≌△BNF(AAS),
∴AM = BN.
(1)如图,连结OC,OF,则OC = OA = OB = OF.又
∵AC = BF,
∴△AOC≌△BOF(SSS),
∴∠COA = ∠BOF,
∴∠COB = ∠FOA.
∴$\overset{\frown}{BC}=\overset{\frown}{AF}$.
(2)
∵∠COA = ∠BOF,OC = OF = OA = OB,
∴∠CAB = ∠OCA = ∠BFO = ∠ABF.
∵CD//EF,
∴∠AMC = ∠ANE;又
∵∠BNF = ∠ANE,
∴∠AMC = ∠BNF.在△AMC和△BNF中,$\left\{\begin{array}{l}\angle AMC = \angle BNF,\\ \angle CAB = \angle ABF,\\ AC = BF,\end{array}\right.$
∴△AMC≌△BNF(AAS),
∴AM = BN.
查看更多完整答案,请扫码查看