3. 若一次函数$y = ax + b的图象与一次函数y = mx + n$的图象相交,且交点在$x$轴上,则$a$,$b$,$m$,$n$满足的关系式是
$an = bm$
.
答案:
$an = bm$ 解析:设交点为$(x,0)$,$ax + b = 0$①,$mx + n = 0$②,①$×m -$②$×a$得:$mb - an = 0$,$an = bm$.
4. 如果$M(x_1,y_1)$,$N(x_2,y_2)是一次函数y = 3x - 8$图象上的两点,且$x_1 + x_2 = - 3$,那么$y_1 + y_2 = $
$-25$
.
答案:
$-25$ 解析:根据题意得$y_{1} + y_{2} = 3(x_{1} + x_{2}) - 16 = 3×(-3) - 16 = -25$.
5. 某市规定了每月用水$18\mathrm{m}^3$以内(含$18\mathrm{m}^3$)和用水$18\mathrm{m}^3$以上两种不同的收费标准. 该市的用户每月应交水费$y$(元)是用水量$x(\mathrm{m}^3)$的函数,其图象如图5 - 5所示.

(1)若某月用水量为$18\mathrm{m}^3$,则应交水费
(2)求当$x > 18$时,$y关于x$的函数解析式. 若小敏家某月交水费$81$元,则这个月的用水量为
(1)若某月用水量为$18\mathrm{m}^3$,则应交水费
45
元?(2)求当$x > 18$时,$y关于x$的函数解析式. 若小敏家某月交水费$81$元,则这个月的用水量为
30
立方米?
答案:
解:
(1)观察函数图象可得当横坐标为18时,纵坐标为45,即应交水费为45元.
(2)设当$x > 18$时,$y$关于$x$的函数解析式为$y = kx + b(k≠0)$,
将$(18,45)$和$(28,75)$代入可得$\left\{\begin{array}{l} 18k + b = 45\\ 28k + b = 75\end{array}\right.$,
解得$\left\{\begin{array}{l} k = 3\\ b = -9\end{array}\right.$,
则当$x > 18$时,$y$关于$x$的函数解析式为$y = 3x - 9$,
当$y = 81$时,$3x - 9 = 81$,解得$x = 30$.
答:这个月的用水量为$30m^{3}$.
(1)观察函数图象可得当横坐标为18时,纵坐标为45,即应交水费为45元.
(2)设当$x > 18$时,$y$关于$x$的函数解析式为$y = kx + b(k≠0)$,
将$(18,45)$和$(28,75)$代入可得$\left\{\begin{array}{l} 18k + b = 45\\ 28k + b = 75\end{array}\right.$,
解得$\left\{\begin{array}{l} k = 3\\ b = -9\end{array}\right.$,
则当$x > 18$时,$y$关于$x$的函数解析式为$y = 3x - 9$,
当$y = 81$时,$3x - 9 = 81$,解得$x = 30$.
答:这个月的用水量为$30m^{3}$.
(1)已知$f(x) = - 2x^2 - 3x + 1$,求$f( - 2)$值;
(2)已知$f(x) = ax^3 + 2x^2 - ax - 6$,当$f(\frac{1}{2}) = a$,求$a$的值;
(3)已知$f(x) = \frac{2kx + a}{3} - \frac{x - bk}{6} - 2$($a$、$b$为常数),若对于任意有理数$k$,总有$f(1) = 0$,求$a$、$b$的值.
-1
(2)已知$f(x) = ax^3 + 2x^2 - ax - 6$,当$f(\frac{1}{2}) = a$,求$a$的值;
-4
(3)已知$f(x) = \frac{2kx + a}{3} - \frac{x - bk}{6} - 2$($a$、$b$为常数),若对于任意有理数$k$,总有$f(1) = 0$,求$a$、$b$的值.
$a=6.5$,$b=-4$
答案:
(1)解:
(1)把$x = -2$代入得,
$f(-2)= -8 + 6 + 1 = -1$ $\therefore f(-2)= -1$;
(2)把$x = \frac{1}{2}$,$f(\frac{1}{2}) = a$代入得,
$f(\frac{1}{2}) = (\frac{1}{2})^{3}a + 2×(\frac{1}{2})^{2} - \frac{1}{2}a - 6 = a$
即$\frac{1}{8}a + \frac{1}{2} - \frac{1}{2}a - 6 = a$ 解得:$a = -4$;
(3)把$x = 1$,$f(1) = 0$代入得,
$f(1)=\frac{2k + a}{3}-\frac{1 - bk}{6}-2 = 0$,整理得
$(4 + b)k + 2a = 13$
$\because a$、$b$为常数,对于任意有理数$k$,总有$f(1) = 0$
$\therefore 4 + b = 0$ $\therefore b = -4$ $\therefore a = 6.5$.
(1)解:
(1)把$x = -2$代入得,
$f(-2)= -8 + 6 + 1 = -1$ $\therefore f(-2)= -1$;
(2)把$x = \frac{1}{2}$,$f(\frac{1}{2}) = a$代入得,
$f(\frac{1}{2}) = (\frac{1}{2})^{3}a + 2×(\frac{1}{2})^{2} - \frac{1}{2}a - 6 = a$
即$\frac{1}{8}a + \frac{1}{2} - \frac{1}{2}a - 6 = a$ 解得:$a = -4$;
(3)把$x = 1$,$f(1) = 0$代入得,
$f(1)=\frac{2k + a}{3}-\frac{1 - bk}{6}-2 = 0$,整理得
$(4 + b)k + 2a = 13$
$\because a$、$b$为常数,对于任意有理数$k$,总有$f(1) = 0$
$\therefore 4 + b = 0$ $\therefore b = -4$ $\therefore a = 6.5$.
查看更多完整答案,请扫码查看