2025年暑假乐园海南出版社八年级数学华师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假乐园海南出版社八年级数学华师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年暑假乐园海南出版社八年级数学华师大版》

2. 如图6,$BD$是ABCD的对角线,$E,F$在$BD$边上,要使四边形$AECF$是平行四边形,还需要增加的一个条件是__________.(填上你认为正确的一个即可)

答案: $BE = DF$(答案不唯一)
3. 如图7,在ABCD中,$AB=5,AD=3,AE$平分$∠DAB$交$BC$的延长线于点$F$,则$CF=$__________.

答案: $2$
4. 如图8,把ABCD折叠,使点$C$与点$A$重合,这时点$D$落在点$D_{1}$处,折痕为$EF$,若$∠BAE=55^{\circ}$,则$∠D_{1}AD=$__________.

答案: $55^{\circ}$
5. 如图9,在ABCD中,$P$是$CD$边上一点,且$AP$和$BP$分别平分$∠DAB$和$∠CBA$,若$AD=5,AP=8$,则$\triangle APB$的周长是__________.
答案: $24$
1. 如图10,$E,F$是ABCD对角线$AC$上的两点,$BE// DF$. 求证:$BE=DF$.
答案: 【解析】:
- 因为四边形$ABCD$是平行四边形,根据平行四边形的性质,所以$AB = CD$,$AB// CD$。
- 由$AB// CD$,根据两直线平行,内错角相等,可得$\angle BAE=\angle DCF$。
- 又因为$BE// DF$,根据两直线平行,内错角相等,所以$\angle BEF=\angle DFE$。
- 再根据等角的补角相等,由$\angle BEF+\angle AEB = 180^{\circ}$,$\angle DFE+\angle DFC = 180^{\circ}$,可得$\angle AEB=\angle DFC$。
- 在$\triangle ABE$和$\triangle CDF$中,$\begin{cases}\angle AEB=\angle DFC\\\angle BAE=\angle DCF\\AB = CD\end{cases}$。
- 根据$AAS$(两角及其中一角的对边对应相等的两个三角形全等),所以$\triangle ABE\cong\triangle CDF$。
- 因为全等三角形的对应边相等,所以$BE = DF$。
【答案】:
$\triangle ABE\cong\triangle CDF(AAS)$,所以$BE = DF$ 。

查看更多完整答案,请扫码查看

关闭