2025年名校作业九年级数学下册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校作业九年级数学下册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第74页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
1. 如图,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为点A,B. 若∠APB = 60°,PA = 8,则弦AB的长是( )

A. 4
B. 4√3
C. 8
D. 8√3
A. 4
B. 4√3
C. 8
D. 8√3
答案:
C 解析:
∵PA,PB为⊙O的切线,
∴PA = PB.
∵∠APB = 60°,
∴△APB为等边三角形.
∴AB = PA = 8.
∵PA,PB为⊙O的切线,
∴PA = PB.
∵∠APB = 60°,
∴△APB为等边三角形.
∴AB = PA = 8.
2. 【教材P96习题T1变式】如图,PA,PB是⊙O的切线,A,B是切点,CD切⊙O于点E. 若△PCD的周长为12,则PA的长为________.

答案:
6 解析:
∵PA,PB是⊙O的切线,CD切⊙O于点E,
∴PA = PB,CA = CE,DB = DE.
∵△PCD的周长为PC + CE + DE + PD = PC + CA + DB + PD = PA + PB = 2PA = 12,
∴PA = 6.
∵PA,PB是⊙O的切线,CD切⊙O于点E,
∴PA = PB,CA = CE,DB = DE.
∵△PCD的周长为PC + CE + DE + PD = PC + CA + DB + PD = PA + PB = 2PA = 12,
∴PA = 6.
3. 如图,BC是⊙O的直径,直线l是过点C的切线,N是⊙O上一点,连接BN并延长,交l于点M,过点N的切线交l于点P,连接CN. 求证:PM = PN.

答案:
证明:
∵BC是⊙O的直径,
∴∠BNC = 90°.
∴∠CNM = 90°.
∴∠PCN + ∠PMN = 90°,∠PNC + ∠PNM = 90°.
∵PC,PN是⊙O的切线,
∴PC = PN.
∴∠PCN = ∠PNC.
∴∠PMN = ∠PNM.
∴PM = PN.
∵BC是⊙O的直径,
∴∠BNC = 90°.
∴∠CNM = 90°.
∴∠PCN + ∠PMN = 90°,∠PNC + ∠PNM = 90°.
∵PC,PN是⊙O的切线,
∴PC = PN.
∴∠PCN = ∠PNC.
∴∠PMN = ∠PNM.
∴PM = PN.
4. 如图,⊙O是四边形ABCD的内切圆,AB = 10,CD = 15,则四边形ABCD的周长为( )

A. 60
B. 55
C. 45
D. 50
A. 60
B. 55
C. 45
D. 50
答案:
D 解析:如图:
∵⊙O是四边形ABCD的内切圆,
∴AE = AF,BE = BG,CG = CH,DH = DF.
∴AD + BC = AF + DF + BG + CG = AE + DH + BE + CH = AB + CD = 10 + 15 = 25.
∴四边形ABCD的周长为AD + BC + AB + CD = 25 + 10 + 15 = 50.
D 解析:如图:
∵⊙O是四边形ABCD的内切圆,
∴AE = AF,BE = BG,CG = CH,DH = DF.
∴AD + BC = AF + DF + BG + CG = AE + DH + BE + CH = AB + CD = 10 + 15 = 25.
∴四边形ABCD的周长为AD + BC + AB + CD = 25 + 10 + 15 = 50.
5. 如图,正方形ABCD的边长为4 cm,以BC为直径在正方形ABCD内作半圆O,过点A作半圆O的切线,切点为点F,与DC交于点E,则△ADE的面积为________cm².

答案:
6 解析:
∵四边形ABCD是正方形,
∴AB = CD = AD = 4 cm,∠D = 90°.
∵AB,AE,DC与半圆O分别相切于点B,F,C,
∴AF = AB = 4 cm,EF = EC.
设EF = EC = x cm,则DE = (4 - x)cm,AE = (4 + x)cm.
在Rt△ADE中,DE² + AD² = AE²,即(4 - x)² + 4² = (4 + x)²,
解得x = 1.
∴DE = 4 - 1 = 3(cm).
∴S_{△ADE} = \frac{1}{2}AD·DE = \frac{1}{2}×4×3 = 6(cm²).
∵四边形ABCD是正方形,
∴AB = CD = AD = 4 cm,∠D = 90°.
∵AB,AE,DC与半圆O分别相切于点B,F,C,
∴AF = AB = 4 cm,EF = EC.
设EF = EC = x cm,则DE = (4 - x)cm,AE = (4 + x)cm.
在Rt△ADE中,DE² + AD² = AE²,即(4 - x)² + 4² = (4 + x)²,
解得x = 1.
∴DE = 4 - 1 = 3(cm).
∴S_{△ADE} = \frac{1}{2}AD·DE = \frac{1}{2}×4×3 = 6(cm²).
6. 如图,PA,PB分别与⊙O相切于点A,B,PO的延长线交⊙O于点C,连接BC,OA. 若OA = 3,PA = 4,求tan∠PCB的值.

答案:
证明:如图,连接OB,过点B作BE⊥PC于点E.
∵PA,PB分别与⊙O相切于点A,B,
∴PB = PA = 4,OA⊥PA,OB⊥PB.
在Rt△POA中,PO = \sqrt{OA² + PA²} = \sqrt{3² + 4²} = 5.
∵S_{△POB} = \frac{1}{2}PO·BE = \frac{1}{2}OB·PB,OB = OA = 3,
∴BE = \frac{OB·PB}{PO} = \frac{12}{5}.
∴OE = \sqrt{OB² - BE²} = \sqrt{3² - (\frac{12}{5})²} = \frac{9}{5}.
∵OC = OA = 3,
∴CE = OC + OE = \frac{24}{5}.
∴tan∠PCB = \frac{BE}{CE} = \frac{1}{2}.
证明:如图,连接OB,过点B作BE⊥PC于点E.
∵PA,PB分别与⊙O相切于点A,B,
∴PB = PA = 4,OA⊥PA,OB⊥PB.
在Rt△POA中,PO = \sqrt{OA² + PA²} = \sqrt{3² + 4²} = 5.
∵S_{△POB} = \frac{1}{2}PO·BE = \frac{1}{2}OB·PB,OB = OA = 3,
∴BE = \frac{OB·PB}{PO} = \frac{12}{5}.
∴OE = \sqrt{OB² - BE²} = \sqrt{3² - (\frac{12}{5})²} = \frac{9}{5}.
∵OC = OA = 3,
∴CE = OC + OE = \frac{24}{5}.
∴tan∠PCB = \frac{BE}{CE} = \frac{1}{2}.
7. 如图,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,C为DE的延长线上一点,且CE = CB.
(1)求证:BC是⊙O的切线.
(2)若⊙O的半径为√5,AD = 2,求线段CE的长.

(1)求证:BC是⊙O的切线.
(2)若⊙O的半径为√5,AD = 2,求线段CE的长.
答案:
(1)证明:如图①,连接OE,OC.
∵DE与⊙O相切,
∴OE⊥DE.
∴∠OEC = 90°.
∵CB = CE,OB = OE,OC = OC,
∴△OBC≌△OEC.
∴∠OBC = ∠OEC = 90°.
又
∵OB是⊙O的半径,
∴BC是⊙O的切线.
(2)解:如图②,过点D作DF⊥BC于点F.
易得四边形ADFB是矩形,
∴DF = AB = 2OB = 2\sqrt{5},BF = AD = 2.
∵AD,CD分别与⊙O相切,
∴DE = AD = 2.
设CE = CB = x,则CF = CB - BF = x - 2,CD = CE + DE = x + 2.
在Rt△DFC中,CD² - CF² = DF²,
即(x + 2)² - (x - 2)² = (2\sqrt{5})²,解得x = \frac{5}{2}.
∴CE = \frac{5}{2}.
(1)证明:如图①,连接OE,OC.
∵DE与⊙O相切,
∴OE⊥DE.
∴∠OEC = 90°.
∵CB = CE,OB = OE,OC = OC,
∴△OBC≌△OEC.
∴∠OBC = ∠OEC = 90°.
又
∵OB是⊙O的半径,
∴BC是⊙O的切线.
(2)解:如图②,过点D作DF⊥BC于点F.
易得四边形ADFB是矩形,
∴DF = AB = 2OB = 2\sqrt{5},BF = AD = 2.
∵AD,CD分别与⊙O相切,
∴DE = AD = 2.
设CE = CB = x,则CF = CB - BF = x - 2,CD = CE + DE = x + 2.
在Rt△DFC中,CD² - CF² = DF²,
即(x + 2)² - (x - 2)² = (2\sqrt{5})²,解得x = \frac{5}{2}.
∴CE = \frac{5}{2}.
查看更多完整答案,请扫码查看