2025年53精准练九年级数学下册人教版山西专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年53精准练九年级数学下册人教版山西专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1.[2024大同平城区一模]$\cos 60^{\circ}$的值是( )
A. $\frac{1}{2}$
B. 1
C. $\frac{\sqrt{3}}{2}$
D. $\sqrt{3}$
A. $\frac{1}{2}$
B. 1
C. $\frac{\sqrt{3}}{2}$
D. $\sqrt{3}$
答案:
A
2.在$\triangle ABC$中,$\angle A = 105^{\circ}$,$\angle B = 30^{\circ}$,则$\tan C$的值是( )
A. $\frac{\sqrt{2}}{2}$
B. $\frac{\sqrt{3}}{3}$
C. 1
D. $\sqrt{3}$
A. $\frac{\sqrt{2}}{2}$
B. $\frac{\sqrt{3}}{3}$
C. 1
D. $\sqrt{3}$
答案:
C
3.如图,以$O$为圆心,适当长为半径画弧,与射线$OA$交于点$B$,再以$B$为圆心,$BO$长为半径画弧,两弧交于点$C$,画射线$OC$,则$\sin(90^{\circ}-\angle AOC)$的值为( )

A. $\frac{1}{2}$
B. $\frac{\sqrt{2}}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{\sqrt{3}}{3}$
A. $\frac{1}{2}$
B. $\frac{\sqrt{2}}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{\sqrt{3}}{3}$
答案:
A
4.已知实数$a = \tan 30^{\circ}$,$b = \cos 60^{\circ}$,$c = \sin 45^{\circ}$,则$a$,$b$,$c$的大小关系为_________.(用“>”连接)
答案:
$c > a > b$
5.计算:
(1)$2\sin 60^{\circ}-\tan 30^{\circ}$;
(2)$\sin 30^{\circ}+4\cos 30^{\circ}\cdot\tan 60^{\circ}-\cos^{2}45^{\circ}$;
(3)$2\cos 30^{\circ}-\tan 45^{\circ}-\sqrt{(1 - \tan 60^{\circ})^{2}}$.
(1)$2\sin 60^{\circ}-\tan 30^{\circ}$;
(2)$\sin 30^{\circ}+4\cos 30^{\circ}\cdot\tan 60^{\circ}-\cos^{2}45^{\circ}$;
(3)$2\cos 30^{\circ}-\tan 45^{\circ}-\sqrt{(1 - \tan 60^{\circ})^{2}}$.
答案:
解:
(1)原式$=2\times\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{3}=\frac{2\sqrt{3}}{3}$.
(2)原式$=\frac{1}{2}+4\times\frac{\sqrt{3}}{2}\times\sqrt{3}-(\frac{\sqrt{2}}{2})^{2}$
$=\frac{1}{2}+6 - \frac{1}{2}$
$=6$.
(3)原式$=2\times\frac{\sqrt{3}}{2}-1-\sqrt{(1 - \sqrt{3})^{2}}$
$=\sqrt{3}-1-\sqrt{3}+1$
$=0$.
解:
(1)原式$=2\times\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{3}=\frac{2\sqrt{3}}{3}$.
(2)原式$=\frac{1}{2}+4\times\frac{\sqrt{3}}{2}\times\sqrt{3}-(\frac{\sqrt{2}}{2})^{2}$
$=\frac{1}{2}+6 - \frac{1}{2}$
$=6$.
(3)原式$=2\times\frac{\sqrt{3}}{2}-1-\sqrt{(1 - \sqrt{3})^{2}}$
$=\sqrt{3}-1-\sqrt{3}+1$
$=0$.
6.在$\triangle ABC$中,$\angle C = 90^{\circ}$,$AB = \sqrt{6}$,$BC = \sqrt{3}$,则$\angle A$的度数为( )
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. $75^{\circ}$
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. $75^{\circ}$
答案:
B
7.若$\angle A$是锐角,$\cos(\angle A - 20^{\circ})=\frac{1}{2}$,则$\angle A$的度数为__________.
答案:
$80^{\circ}$
8.已知锐角$A$满足关系式$4\sin^{2}A - 8\sin A + 3 = 0$,则$\angle A$的度数为__________.
答案:
$30^{\circ}$
9.(1)已知$\cos\alpha = \sqrt{2}\sin 30^{\circ}$,求锐角$\alpha$的度数;
(2)已知$\alpha$为锐角,且$2\sqrt{3}\sin\alpha = 4\cos 30^{\circ}-\tan 60^{\circ}$,求$\alpha$的度数.
(2)已知$\alpha$为锐角,且$2\sqrt{3}\sin\alpha = 4\cos 30^{\circ}-\tan 60^{\circ}$,求$\alpha$的度数.
答案:
解:
(1)由题意,得$\cos\alpha=\sqrt{2}\times\frac{1}{2}=\frac{\sqrt{2}}{2}$,
$\therefore\alpha = 45^{\circ}$.
(2)$\because2\sqrt{3}\sin\alpha = 4\cos30^{\circ}-\tan60^{\circ}$
$=4\times\frac{\sqrt{3}}{2}-\sqrt{3}=\sqrt{3}$,
$\therefore\sin\alpha=\frac{1}{2}$,
$\therefore\alpha = 30^{\circ}$.
(1)由题意,得$\cos\alpha=\sqrt{2}\times\frac{1}{2}=\frac{\sqrt{2}}{2}$,
$\therefore\alpha = 45^{\circ}$.
(2)$\because2\sqrt{3}\sin\alpha = 4\cos30^{\circ}-\tan60^{\circ}$
$=4\times\frac{\sqrt{3}}{2}-\sqrt{3}=\sqrt{3}$,
$\therefore\sin\alpha=\frac{1}{2}$,
$\therefore\alpha = 30^{\circ}$.
10.用计算器求$\sin 24^{\circ}37'18''$的值,以下按键顺序正确的是( )
A. $\boxed{\sin}\ \boxed{2}\ \boxed{4}\ \boxed{^{\circ}' ''}\ \boxed{3}\ \boxed{7}\ \boxed{^{\circ}' ''}\ \boxed{1}\ \boxed{8}\ \boxed{^{\circ}' ''}\ \boxed{=}$
B. $\boxed{2}\ \boxed{4}\ \boxed{^{\circ}' ''}\ \boxed{3}\ \boxed{7}\ \boxed{^{\circ}' ''}\ \boxed{1}\ \boxed{8}\ \boxed{^{\circ}' ''}\ \boxed{\sin}\ \boxed{=}$
C. $\boxed{2\text{nd F}}\ \boxed{\sin}\ \boxed{2}\ \boxed{4}\ \boxed{^{\circ}' ''}\ \boxed{3}\ \boxed{7}\ \boxed{^{\circ}' ''}\ \boxed{1}\ \boxed{8}\ \boxed{^{\circ}' ''}\ \boxed{=}$
D. $\boxed{\sin}\ \boxed{2}\ \boxed{4}\ \boxed{^{\circ}' ''}\ \boxed{3}\ \boxed{7}\ \boxed{^{\circ}' ''}\ \boxed{1}\ \boxed{8}\ \boxed{^{\circ}' ''}\ \boxed{2\text{nd F}}\ \boxed{=}$
A. $\boxed{\sin}\ \boxed{2}\ \boxed{4}\ \boxed{^{\circ}' ''}\ \boxed{3}\ \boxed{7}\ \boxed{^{\circ}' ''}\ \boxed{1}\ \boxed{8}\ \boxed{^{\circ}' ''}\ \boxed{=}$
B. $\boxed{2}\ \boxed{4}\ \boxed{^{\circ}' ''}\ \boxed{3}\ \boxed{7}\ \boxed{^{\circ}' ''}\ \boxed{1}\ \boxed{8}\ \boxed{^{\circ}' ''}\ \boxed{\sin}\ \boxed{=}$
C. $\boxed{2\text{nd F}}\ \boxed{\sin}\ \boxed{2}\ \boxed{4}\ \boxed{^{\circ}' ''}\ \boxed{3}\ \boxed{7}\ \boxed{^{\circ}' ''}\ \boxed{1}\ \boxed{8}\ \boxed{^{\circ}' ''}\ \boxed{=}$
D. $\boxed{\sin}\ \boxed{2}\ \boxed{4}\ \boxed{^{\circ}' ''}\ \boxed{3}\ \boxed{7}\ \boxed{^{\circ}' ''}\ \boxed{1}\ \boxed{8}\ \boxed{^{\circ}' ''}\ \boxed{2\text{nd F}}\ \boxed{=}$
答案:
A
11.已知$A$,$B$均为锐角,根据三角函数值,用计算器求$\angle A$,$\angle B$的度数.
(1)$\cos A = 0.7651$; (2)$\sin B = 0.9343$.
(1)$\cos A = 0.7651$; (2)$\sin B = 0.9343$.
答案:
解:
(1)$\angle A\approx40^{\circ}5'3''$.
(2)$\angle B\approx69^{\circ}6'55''$.
(1)$\angle A\approx40^{\circ}5'3''$.
(2)$\angle B\approx69^{\circ}6'55''$.
查看更多完整答案,请扫码查看