2025年53精准练九年级数学下册人教版山西专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年53精准练九年级数学下册人教版山西专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
10. 如图,在Rt△ABC中,∠C = 90°,D是BC的中点,AC = 6,tan∠ABC = $\frac{1}{2}$,则BD =( )

A. 8
B. 6
C. 4
D. 3
A. 8
B. 6
C. 4
D. 3
答案:
B
11. [2023运城盐湖区期末] 如图,在5×6的正方形网格中,点A,B,C都在格点上,则tan∠ABC的值为( )

A. $\frac{\sqrt{2}}{2}$
B. $\sqrt{2}$
C. 1
D. $\frac{\sqrt{3}}{3}$
A. $\frac{\sqrt{2}}{2}$
B. $\sqrt{2}$
C. 1
D. $\frac{\sqrt{3}}{3}$
答案:
C
12. [2023大同云州区期末] 如图,在Rt△ABC中,∠ACB = 90°,D是AB的中点,连接CD,过点B作CD的垂线,交CD的延长线于点E,tan A = $\frac{4}{3}$,则cos∠DBE的值为__________.
答案:
$\frac{24}{25}$
13. 在矩形ABCD中,AB = 10,BC = 8,E为边AD上一点,沿CE将△CDE翻折,使点D正好落在AB边上的点F处,求tan∠AFE的值.
答案:
解:由题意可知∠AFE + ∠EFC + ∠BFC = 180°.
由折叠的性质,得∠EFC = ∠EDC = 90°,所以∠AFE + ∠BFC = 90°,
在Rt△BCF中,∠BCF + ∠BFC = 90°,
所以∠AFE = ∠BCF.
在Rt△BFC中,BC = 8,根据矩形和折叠的性质,得CF = CD = AB = 10,
由勾股定理可得BF = $\sqrt{CF^{2}-BC^{2}} = 6$,
则tan∠BCF = $\frac{BF}{BC}=\frac{3}{4}$,
所以tan∠AFE = tan∠BCF = $\frac{3}{4}$.
由折叠的性质,得∠EFC = ∠EDC = 90°,所以∠AFE + ∠BFC = 90°,
在Rt△BCF中,∠BCF + ∠BFC = 90°,
所以∠AFE = ∠BCF.
在Rt△BFC中,BC = 8,根据矩形和折叠的性质,得CF = CD = AB = 10,
由勾股定理可得BF = $\sqrt{CF^{2}-BC^{2}} = 6$,
则tan∠BCF = $\frac{BF}{BC}=\frac{3}{4}$,
所以tan∠AFE = tan∠BCF = $\frac{3}{4}$.
14. [2024银川模拟] 如图,PA,PB分别与⊙O相切于A,B两点,AC是⊙O的直径. 连接PO交⊙O于点D,交AB于点H.
(1) 求证:∠BAC = $\frac{1}{2}$∠APB;
(2) 若AC = 6,cos∠BAC = $\frac{4}{5}$,求PD的长.
(1) 求证:∠BAC = $\frac{1}{2}$∠APB;
(2) 若AC = 6,cos∠BAC = $\frac{4}{5}$,求PD的长.
答案:
解:
(1)证明:连接OB,
∵PA,PB分别与⊙O相切于A,B两点,
∴PA = PB,OA⊥PA,OB⊥PB,
∵OA = OB,
∴PO平分∠APB,
∴∠APO = $\frac{1}{2}$∠APB,PO⊥AB,
∴∠OAH + ∠PAH = ∠APH + ∠PAH = 90°,
∴∠BAC = ∠APH = $\frac{1}{2}$∠APB.
(2)
∵∠APO = ∠BAC,
∴cos∠APO = cos∠BAC = $\frac{4}{5}$,
∴$\frac{AP}{PO}=\frac{4}{5}$,
设AP = 4x,则PO = 5x,
∵∠PAO = 90°,
∴AO = $\sqrt{PO^{2}-AP^{2}} = 3x$,
∵AC = 2AO = 6,
∴3x = 3,
∴x = 1,
∴PO = 5x = 5,AO = OD = 3x = 3,
∴PD = PO - OD = 5 - 3 = 2.
解:
(1)证明:连接OB,
∵PA,PB分别与⊙O相切于A,B两点,
∴PA = PB,OA⊥PA,OB⊥PB,
∵OA = OB,
∴PO平分∠APB,
∴∠APO = $\frac{1}{2}$∠APB,PO⊥AB,
∴∠OAH + ∠PAH = ∠APH + ∠PAH = 90°,
∴∠BAC = ∠APH = $\frac{1}{2}$∠APB.
(2)
∵∠APO = ∠BAC,
∴cos∠APO = cos∠BAC = $\frac{4}{5}$,
∴$\frac{AP}{PO}=\frac{4}{5}$,
设AP = 4x,则PO = 5x,
∵∠PAO = 90°,
∴AO = $\sqrt{PO^{2}-AP^{2}} = 3x$,
∵AC = 2AO = 6,
∴3x = 3,
∴x = 1,
∴PO = 5x = 5,AO = OD = 3x = 3,
∴PD = PO - OD = 5 - 3 = 2.
15. [推理能力·2024运城期末] 如图,已知l1//l2//l3,相邻两条平行直线间的距离相等,△ABC的三个顶点分别在这三条平行直线上,且∠ACB = 90°,∠CAB = 45°,则tan α的值是__________.
答案:
$\frac{1}{3}$
详解:如图,过点A作l₁的垂线,垂足为D,过点B分别作l₁、l₃的垂线,垂足分别为E、F.
设l₁、l₂之间的距离为a,则l₂与l₃之间的距离也为a.
∵∠ACB = 90°,∠CAB = 45°,
∴∠DCA + ∠ECB = 90°,AC = CB,
∵∠DCA + ∠DAC = 90°,
∴∠DAC = ∠ECB,
∵∠ADC = ∠CEB,AC = CB,
∴△ADC≌△CEB(AAS),
∴CE = AD = 2a,DC = EB = a,
∴易得AF = DE = 3a,
∵BF = a,
∴tanα = $\frac{BF}{AF}=\frac{1}{3}$.
$\frac{1}{3}$
详解:如图,过点A作l₁的垂线,垂足为D,过点B分别作l₁、l₃的垂线,垂足分别为E、F.
设l₁、l₂之间的距离为a,则l₂与l₃之间的距离也为a.
∵∠ACB = 90°,∠CAB = 45°,
∴∠DCA + ∠ECB = 90°,AC = CB,
∵∠DCA + ∠DAC = 90°,
∴∠DAC = ∠ECB,
∵∠ADC = ∠CEB,AC = CB,
∴△ADC≌△CEB(AAS),
∴CE = AD = 2a,DC = EB = a,
∴易得AF = DE = 3a,
∵BF = a,
∴tanα = $\frac{BF}{AF}=\frac{1}{3}$.
查看更多完整答案,请扫码查看