1. 若二次根式$\sqrt {x-1}$在实数范围内有意义,则x的取值范围是(
A.$x= 1$
B.$x≥1$
C.$x>1$
D.$x<1$
B
)A.$x= 1$
B.$x≥1$
C.$x>1$
D.$x<1$
答案:
B
2. 下列各式计算正确的是(
A.$\sqrt {2}+\sqrt {3}= \sqrt {5}$
B.$2+\sqrt {2}= 2\sqrt {2}$
C.$\sqrt {2}\cdot \sqrt {3}= \sqrt {6}$
D.$\frac {\sqrt {4}}{2}= \sqrt {2}$
C
)A.$\sqrt {2}+\sqrt {3}= \sqrt {5}$
B.$2+\sqrt {2}= 2\sqrt {2}$
C.$\sqrt {2}\cdot \sqrt {3}= \sqrt {6}$
D.$\frac {\sqrt {4}}{2}= \sqrt {2}$
答案:
C
3. 二次根式$\sqrt {(-3)^{2}}$的值是(
A.-3
B.3或-3
C.9
D.3
D
)A.-3
B.3或-3
C.9
D.3
答案:
D
4. 下列各式计算正确的是(
A.$\sqrt {18}-\sqrt {32}= -\sqrt {2}$
B.$(-3)^{-2}= -\frac {1}{9}$
C.$\sqrt {7}-\sqrt {2}= \sqrt {5}$
D.$|1-\sqrt {2}|= 1-\sqrt {2}$
A
)A.$\sqrt {18}-\sqrt {32}= -\sqrt {2}$
B.$(-3)^{-2}= -\frac {1}{9}$
C.$\sqrt {7}-\sqrt {2}= \sqrt {5}$
D.$|1-\sqrt {2}|= 1-\sqrt {2}$
答案:
A
5. 计算$(\sqrt {3}+1)(\sqrt {3}-1)$的结果是(
A.3
B.2
C.$\sqrt {2}$
D.1
B
)A.3
B.2
C.$\sqrt {2}$
D.1
答案:
B
6. 计算:$\sqrt {2}×\sqrt {18}=$
6
.
答案:
6
7. 若$\sqrt {a+4}= 4$,则$(a-2)^{2}$的值为____
100
.
答案:
100
8. 已知$a= 5,b= 12$,则$\sqrt {a^{2}+b^{2}}$的值是
13
.
答案:
13
9. 若$\sqrt {a^{2}}= -a$,则a的取值范围是
$a \leq 0$
.
答案:
$a \leq 0$
10. 若$y= \sqrt {x-3}+\sqrt {3-x}$,则$x^{y}= $
1
.
答案:
1
11. 已知$\sqrt {m-3}+(n+1)^{2}= 0$,求$m-n$的值.
答案:
若要使等式成立,则需满足条件$\sqrt{m - 3} = 0$,$(n + 1)^2 = 0$,所以$m = 3$,$n = -1$,故$m - n = 4$。
12. 已知$x+\frac {1}{x}= \sqrt {10}$,求$x^{2}+\frac {1}{x^{2}}$的值.
答案:
解:$\because x + \frac{1}{x} = \sqrt{10}$,$\therefore (x + \frac{1}{x})^2 = 10$,
$\therefore x^2 + \frac{1}{x^2} + 2 = 10$,$\therefore x^2 + \frac{1}{x^2} = 8$。
$\therefore x^2 + \frac{1}{x^2} + 2 = 10$,$\therefore x^2 + \frac{1}{x^2} = 8$。
13. 若$x<2$,化简$\sqrt {(x-2)^{2}}+|3-x|$.
答案:
解:$\because x < 2$,$\therefore x - 2 < 0$,$3 - x > 0$,
$\therefore \sqrt{(x - 2)^2} = 2 - x$,$\vert 3 - x \vert = 3 - x$,
$\therefore$原式$= 2 - x + 3 - x = 5 - 2x$。
$\therefore \sqrt{(x - 2)^2} = 2 - x$,$\vert 3 - x \vert = 3 - x$,
$\therefore$原式$= 2 - x + 3 - x = 5 - 2x$。
查看更多完整答案,请扫码查看