2025年1加1轻巧夺冠完美期末八年级数学上册人教版辽宁专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年1加1轻巧夺冠完美期末八年级数学上册人教版辽宁专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
23. (13分)
如图,在平面直角坐标系$x O y$中,点$A$在$y$轴正半轴上,点$B$在第二象限,$\triangle A O B$为等边三角形,点$B$的横坐标为$-4$,过点$B$作$B C \perp A B$,交$y$轴于点$C$.
(1)如图1,求$B C$的长.
(2)如图2,$P$为$x$轴正半轴上一点,点$Q$在$B C$上,连接$A P,A Q$,使$\angle P A Q=60^{\circ}$,设点$P$的横坐标为$t(0<t<8)$,线段$C Q$的长为$n$,用含$t$的代数式表示$n$.
(3)如图3,在(2)的条件下,连接$O Q$,当$A Q+O Q$取最小值时,在平面直角坐标系$x O y$中取一点$D$,连接$D P,D Q$,使$D P=D Q$,且$\angle P D Q=3 \angle B A Q$,请直接

如图,在平面直角坐标系$x O y$中,点$A$在$y$轴正半轴上,点$B$在第二象限,$\triangle A O B$为等边三角形,点$B$的横坐标为$-4$,过点$B$作$B C \perp A B$,交$y$轴于点$C$.
(1)如图1,求$B C$的长.
(2)如图2,$P$为$x$轴正半轴上一点,点$Q$在$B C$上,连接$A P,A Q$,使$\angle P A Q=60^{\circ}$,设点$P$的横坐标为$t(0<t<8)$,线段$C Q$的长为$n$,用含$t$的代数式表示$n$.
(3)如图3,在(2)的条件下,连接$O Q$,当$A Q+O Q$取最小值时,在平面直角坐标系$x O y$中取一点$D$,连接$D P,D Q$,使$D P=D Q$,且$\angle P D Q=3 \angle B A Q$,请直接
写
出
此时$t$的值及点$D$的坐标.
答案:
23.解:
(1)如答图1,过点$B$作$BE \perp y$轴于点$E$,则$\angle CEB = 90^{\circ}$,$\because$点$B$的横坐标为$-4$,$\therefore BE = 4$,$\because \triangle AOB$为等边三角形,$\therefore \angle BAO = 60^{\circ}$,$\because AB \perp BC$,$\therefore \angle ABC = 90^{\circ}$,$\therefore \angle BCE = 30^{\circ}$,$\therefore BC = 2BE = 8$.
(2)$\because$点$P$的横坐标为$t(0 < t < 8)$,$\therefore OP = t$,$\because \triangle AOB$为等边三角形,$\therefore AB = AO$,$\angle BAO = 60^{\circ}$,$\because \angle BAO = \angle PAQ = 60^{\circ}$,$\therefore \angle BAQ = \angle OAP$,在$\triangle ABQ$和$\triangle AOP$中,$\begin{cases} \angle ABQ = \angle AOP, \\ AB = AO, \\ \angle BAQ = \angle OAP, \end{cases}$ $\therefore \triangle ABQ \cong \triangle AOP(ASA)$,$\therefore BQ = OP = t$,由
(1)知$BC = 8$,$\therefore CQ = 8 - t$,即$n = 8 - t$.
(3)如答图2,延长$AB$交$x$轴于点$A'$,$\because \triangle AOB$为等边三角形,$\therefore AB = BO = AO$,$\angle ABO = \angle AOB = 60^{\circ}$,$\because \angle AOA' = 90^{\circ}$,$\therefore \angle BOA' = \angle AA'O = 30^{\circ}$,$\therefore OB = A'B = AB$,$\because AB \perp BC$,$\therefore$点$A$与点$A'$关于$BC$对称,$BC$与$x$轴交于点$Q$,$\therefore$此时$AQ + OQ$的值最小,由
(2)知$BQ = OP = t$,$CQ = 8 - t$,$\because AB = AO$,$AQ = AQ$,$\angle ABQ = \angle AOQ = 90^{\circ}$,$\therefore Rt \triangle ABQ \cong Rt \triangle AOQ(HL)$,$\therefore OQ = BQ = t$,$\angle BAQ = \angle OAQ = 30^{\circ}$,$\angle OCQ = 30^{\circ}$,$\therefore OQ = \frac{1}{2}CQ$,$\therefore t = \frac{1}{2}(8 - t)$,解得$t = \frac{8}{3}$,$\because OQ = OP$,$PQ \perp y$轴,$\therefore y$轴是$PQ$的垂直平分线,$\because DP = DQ$,$\therefore$点$D$在$y$轴上,$\because \angle BAQ = 30^{\circ}$,$\angle PDQ = 3\angle BAQ$,$\therefore \angle PDQ = 90^{\circ}$,$\therefore \triangle PDQ$是等腰直角三角形,$\therefore OD = OQ = OP = \frac{8}{3}$,$\therefore$点$D$的坐标为$(0,\frac{8}{3})$或$(0,-\frac{8}{3})$.
23.解:
(1)如答图1,过点$B$作$BE \perp y$轴于点$E$,则$\angle CEB = 90^{\circ}$,$\because$点$B$的横坐标为$-4$,$\therefore BE = 4$,$\because \triangle AOB$为等边三角形,$\therefore \angle BAO = 60^{\circ}$,$\because AB \perp BC$,$\therefore \angle ABC = 90^{\circ}$,$\therefore \angle BCE = 30^{\circ}$,$\therefore BC = 2BE = 8$.
(2)$\because$点$P$的横坐标为$t(0 < t < 8)$,$\therefore OP = t$,$\because \triangle AOB$为等边三角形,$\therefore AB = AO$,$\angle BAO = 60^{\circ}$,$\because \angle BAO = \angle PAQ = 60^{\circ}$,$\therefore \angle BAQ = \angle OAP$,在$\triangle ABQ$和$\triangle AOP$中,$\begin{cases} \angle ABQ = \angle AOP, \\ AB = AO, \\ \angle BAQ = \angle OAP, \end{cases}$ $\therefore \triangle ABQ \cong \triangle AOP(ASA)$,$\therefore BQ = OP = t$,由
(1)知$BC = 8$,$\therefore CQ = 8 - t$,即$n = 8 - t$.
(3)如答图2,延长$AB$交$x$轴于点$A'$,$\because \triangle AOB$为等边三角形,$\therefore AB = BO = AO$,$\angle ABO = \angle AOB = 60^{\circ}$,$\because \angle AOA' = 90^{\circ}$,$\therefore \angle BOA' = \angle AA'O = 30^{\circ}$,$\therefore OB = A'B = AB$,$\because AB \perp BC$,$\therefore$点$A$与点$A'$关于$BC$对称,$BC$与$x$轴交于点$Q$,$\therefore$此时$AQ + OQ$的值最小,由
(2)知$BQ = OP = t$,$CQ = 8 - t$,$\because AB = AO$,$AQ = AQ$,$\angle ABQ = \angle AOQ = 90^{\circ}$,$\therefore Rt \triangle ABQ \cong Rt \triangle AOQ(HL)$,$\therefore OQ = BQ = t$,$\angle BAQ = \angle OAQ = 30^{\circ}$,$\angle OCQ = 30^{\circ}$,$\therefore OQ = \frac{1}{2}CQ$,$\therefore t = \frac{1}{2}(8 - t)$,解得$t = \frac{8}{3}$,$\because OQ = OP$,$PQ \perp y$轴,$\therefore y$轴是$PQ$的垂直平分线,$\because DP = DQ$,$\therefore$点$D$在$y$轴上,$\because \angle BAQ = 30^{\circ}$,$\angle PDQ = 3\angle BAQ$,$\therefore \angle PDQ = 90^{\circ}$,$\therefore \triangle PDQ$是等腰直角三角形,$\therefore OD = OQ = OP = \frac{8}{3}$,$\therefore$点$D$的坐标为$(0,\frac{8}{3})$或$(0,-\frac{8}{3})$.
查看更多完整答案,请扫码查看