2025年1加1轻巧夺冠完美期末八年级数学上册人教版辽宁专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年1加1轻巧夺冠完美期末八年级数学上册人教版辽宁专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
14. (葫芦岛兴城期末)如图,在$\angle AOB$的两边上分别截取$OC = OD$,$OE = OF$(点$C$与点$E$不重合),连接$CF$,$DE$,$CF$与$DE$交于点$P$,过点$P$作$PM \perp OB$,垂足为$M$,$N$是线段$OC$上一点,连接$PN$,且$\angle PNO + \angle PFO = 180^{\circ}$.若$ON = 3$,$OF = 7$,则$OM$的长为

5
.
答案:
14.5 【解析】如答图,过点P作PQ⊥OA于点Q,在△EOD和△FOC中,$\begin{cases} CE = OF, \\ ∠O = ∠FOC, \\ OD = OC, \end{cases} $
∴△EOD ≌ △FOC(SAS),
∴∠OED = ∠OFC,
∵OC = OD,OE = OF,
∴CE = DF,在△CPE和△DPF中,$\begin{cases} ∠CPE = ∠DPF, \\ ∠CEP = ∠DFP, \\ CE = DF, \end{cases} $
∴△CPE ≌ △DPF(AAS),
∴$S_{△CPE} = S_{△DPF},$PE = PF,
∴$\frac{1}{2}CE·PQ = \frac{1}{2}DF·PM,$
∴PQ = PM,
∵∠PNO + ∠PFO = 180°,∠PNO + ∠PNQ = 180°,
∴∠PNQ = ∠PFO,在△PNQ和△PFM中,$\begin{cases} ∠PNQ = ∠PFM, \\ ∠PQN = ∠PMF = 90°, \\ PQ = PM, \end{cases} $
∴△PNQ ≌ △PFM(AAS),
∴PN = PF,NQ = FM,
∵PQ⊥NE,
∴$NQ = EQ = \frac{1}{2}EN,$
∵ON = 3,OF = OE = 7,
∴EN = OE - ON = 4,
∴NQ = 2 = FM,
∴OM = OF - FM = 5.
14.5 【解析】如答图,过点P作PQ⊥OA于点Q,在△EOD和△FOC中,$\begin{cases} CE = OF, \\ ∠O = ∠FOC, \\ OD = OC, \end{cases} $
∴△EOD ≌ △FOC(SAS),
∴∠OED = ∠OFC,
∵OC = OD,OE = OF,
∴CE = DF,在△CPE和△DPF中,$\begin{cases} ∠CPE = ∠DPF, \\ ∠CEP = ∠DFP, \\ CE = DF, \end{cases} $
∴△CPE ≌ △DPF(AAS),
∴$S_{△CPE} = S_{△DPF},$PE = PF,
∴$\frac{1}{2}CE·PQ = \frac{1}{2}DF·PM,$
∴PQ = PM,
∵∠PNO + ∠PFO = 180°,∠PNO + ∠PNQ = 180°,
∴∠PNQ = ∠PFO,在△PNQ和△PFM中,$\begin{cases} ∠PNQ = ∠PFM, \\ ∠PQN = ∠PMF = 90°, \\ PQ = PM, \end{cases} $
∴△PNQ ≌ △PFM(AAS),
∴PN = PF,NQ = FM,
∵PQ⊥NE,
∴$NQ = EQ = \frac{1}{2}EN,$
∵ON = 3,OF = OE = 7,
∴EN = OE - ON = 4,
∴NQ = 2 = FM,
∴OM = OF - FM = 5.
15. (葫芦岛绥中期末)如图,在四边形$ABCD$中,$\angle ABC = 60^{\circ}$,$BD$平分$\angle ABC$,$\angle BCD > \angle CBD$,$BC = 24$,$P$,$Q$分别是$BD$,$BC$上的动点.当$CP + PQ$取得最小值时,$BQ$的长是

12
.
答案:
15.12 【解析】观察图形特点可知点Q关于直线BD的对称点Q'均在AB上,所以CP + PQ的值可以转化为CP + PQ',易知由点C向AB作垂线时,CP + PQ'的值最小,为线段CQ'的长度,由Rt△CQ'B中,由∠Q'BC = 60°易知,$BQ' = \frac{1}{2}BC = \frac{1}{2}×24 = 12 = BQ.$
16. (每小题5分,共10分)(铁岭县期末)
计算:
(1)$(- 3a^{2}b^{2}) · (- 2ab)^{2} ÷ (2ab^{2})^{2}$;
(2)$(2x + 1)(2x - 1) - (2x - 3)^{2}$.
计算:
(1)$(- 3a^{2}b^{2}) · (- 2ab)^{2} ÷ (2ab^{2})^{2}$;
(2)$(2x + 1)(2x - 1) - (2x - 3)^{2}$.
答案:
16.解:
(1)原式$ = (-3a^{2}b^{2})·4a^{2}b^{2}÷4a^{2}b^{4} = -12a^{4}b^{4}÷4a^{2}b^{4} = -3a^{2}.$
(2)原式$ = 4x^{2} - 1 - 4x^{2} + 12x - 9 = 12x - 10.$
(1)原式$ = (-3a^{2}b^{2})·4a^{2}b^{2}÷4a^{2}b^{4} = -12a^{4}b^{4}÷4a^{2}b^{4} = -3a^{2}.$
(2)原式$ = 4x^{2} - 1 - 4x^{2} + 12x - 9 = 12x - 10.$
17. (8分)(大连高新期末)
先化简,再求值:$(\frac{2}{a - 2} - \frac{a^{2} - 4}{a^{2} - 4a + 4}) ÷ \frac{a^{2} + 2a}{a - 2}$,其中$a = - 3$.
先化简,再求值:$(\frac{2}{a - 2} - \frac{a^{2} - 4}{a^{2} - 4a + 4}) ÷ \frac{a^{2} + 2a}{a - 2}$,其中$a = - 3$.
答案:
17.解:原式$ = [\frac{2}{a - 2} - \frac{(a + 2)(a - 2)}{(a - 2)^{2}}]·\frac{a - 2}{a(a + 2)} = (\frac{2}{a - 2} - \frac{a - 2}{a - 2})·\frac{a - 2}{a(a + 2)} = \frac{2 - a - 2}{a(a + 2)} = \frac{-a}{a(a + 2)} = -\frac{1}{a + 2},$当a = -3时,原式$ = -\frac{1}{-3 + 2} = 1.$
18. (8分)(鞍山期末)
为筹办元旦联欢会,八年级(1)班两次到超市购买同一款饮料,第一次按标价购买,用了96元;第二次超市有优惠活动,按标价的6折购买,用了72元.若两次一共购买了60瓶饮料,则这种饮料的标价是多少?
为筹办元旦联欢会,八年级(1)班两次到超市购买同一款饮料,第一次按标价购买,用了96元;第二次超市有优惠活动,按标价的6折购买,用了72元.若两次一共购买了60瓶饮料,则这种饮料的标价是多少?
答案:
18.解:设这种饮料的标价是x元/瓶,根据题意得$\frac{96}{x} + \frac{72}{0.6x} = 60,$解得x = 3.6,经检验,x = 3.6是原分式方程的解,且符合题意.
答:这种饮料的标价是3.6元/瓶.
答:这种饮料的标价是3.6元/瓶.
查看更多完整答案,请扫码查看