2025年1加1轻巧夺冠完美期末八年级数学上册人教版辽宁专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年1加1轻巧夺冠完美期末八年级数学上册人教版辽宁专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
23. (13分)(抚顺东洲期末,有改编)
【阅读理解】
如图1,在$\triangle ABC$中,若$AB = 10$,$AC = 8$,求边BC上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使$DE = AD$.请根据小明的方法思考:
(1)证明:$\triangle ADC \cong \triangle EDB$.
(2)连接BE,利用三角形的三边关系求AE的取值范围.
【方法总结】
解题时,条件中若出现"中点""中线"字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
【问题解决】
(3)如图2,AD是$\triangle ABC$的中线,$AB = AE$,$AC = AF$,$∠BAE + ∠CAF = 180^{\circ}$,试判断线段EF与AD的数量关系,并说明理由.
(4)在(3)的条件下,若$∠BAE = ∠CAF = 90^{\circ}$,延长DA交EF于点G,如图3,$AD = 2$,$AG = 3$,请

【阅读理解】
如图1,在$\triangle ABC$中,若$AB = 10$,$AC = 8$,求边BC上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使$DE = AD$.请根据小明的方法思考:
(1)证明:$\triangle ADC \cong \triangle EDB$.
(2)连接BE,利用三角形的三边关系求AE的取值范围.
【方法总结】
解题时,条件中若出现"中点""中线"字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
【问题解决】
(3)如图2,AD是$\triangle ABC$的中线,$AB = AE$,$AC = AF$,$∠BAE + ∠CAF = 180^{\circ}$,试判断线段EF与AD的数量关系,并说明理由.
(4)在(3)的条件下,若$∠BAE = ∠CAF = 90^{\circ}$,延长DA交EF于点G,如图3,$AD = 2$,$AG = 3$,请
直
接
写
出
$\triangle ABC$的面积.
答案:
23.解:
(1)证明:$\because AD$是中线,$\therefore BD = CD$,又$\because \angle ADC = \angle EDB$,$\therefore \triangle ADC \cong \triangle EDB(SAS)$。
(2)$\because \triangle ADC \cong \triangle EDB$,$\therefore AC = EB = 8$,在$\triangle ABE$中,$AB - EB \lt AE \lt AB + EB$,$\therefore 2 \lt AE \lt 18$,即$2 \lt 2AD \lt 18$,$\therefore 1 \lt AD \lt 9$。
(3)$EF = 2AD$,理由如下:延长$AD$到点$M$,使得$MD = AD$,连接$MB$,如答图$1$,$\therefore AM = AD + MD = 2AD$,$\because AD$是$\triangle ABC$的中线,$\therefore BD = CD$,在$\triangle BDM$和$\triangle CDA$中,$\begin{cases}BD = CD\\\angle BDM = \angle CDA\\MD = AD\end{cases}$,$\therefore \triangle BDM \cong \triangle CDA(SAS)$,$\therefore MB = AC$,$\because AC = AF$,$\therefore MB = AF$,$\therefore \triangle BDM \cong \triangle CDA$,$\therefore \angle MBD = \angle ACD$,$\therefore MB// AC$,$\because \angle ABM + \angle BAC = 180^{\circ}$,$\therefore \angle BAE + \angle CAF = 180^{\circ}$,$\because \angle BAC + \angle FAE = 360^{\circ} - (\angle BAE + \angle CAF) = 360^{\circ} - 180^{\circ} = 180^{\circ}$,$\therefore \angle ABM = \angle FAE$,在$\triangle ABM$和$\triangle EAF$中,$\begin{cases}AB = EA\\\angle ABM = \angle EAF\\MB = AF\end{cases}$,$\therefore \triangle ABM \cong \triangle EAF(SAS)$,$\therefore AM = EF$,$\because AM = 2AD$,$\therefore EF = 2AD$。

(4)延长$AD$到点$M$,使得$DM = AD$,连接$MB$,由
(3)可知$\angle BAM = \angle E$,$EF = AM = 2AD = 4$,$\because \angle BAE = \angle CAF = 90^{\circ}$,$\therefore \angle BAM + \angle EAG = 90^{\circ}$,$\therefore \angle E + \angle EAG = 90^{\circ}$,即$\angle AGE = 90^{\circ}$,同理得$\triangle ADC \cong \triangle MDB$,$\triangle ABM \cong \triangle EAF$,$S_{\triangle ABC}=S_{\triangle ABM}=S_{\triangle AEF}=\frac{1}{2}EF· AG=\frac{1}{2}×4×3 = 6$。
23.解:
(1)证明:$\because AD$是中线,$\therefore BD = CD$,又$\because \angle ADC = \angle EDB$,$\therefore \triangle ADC \cong \triangle EDB(SAS)$。
(2)$\because \triangle ADC \cong \triangle EDB$,$\therefore AC = EB = 8$,在$\triangle ABE$中,$AB - EB \lt AE \lt AB + EB$,$\therefore 2 \lt AE \lt 18$,即$2 \lt 2AD \lt 18$,$\therefore 1 \lt AD \lt 9$。
(3)$EF = 2AD$,理由如下:延长$AD$到点$M$,使得$MD = AD$,连接$MB$,如答图$1$,$\therefore AM = AD + MD = 2AD$,$\because AD$是$\triangle ABC$的中线,$\therefore BD = CD$,在$\triangle BDM$和$\triangle CDA$中,$\begin{cases}BD = CD\\\angle BDM = \angle CDA\\MD = AD\end{cases}$,$\therefore \triangle BDM \cong \triangle CDA(SAS)$,$\therefore MB = AC$,$\because AC = AF$,$\therefore MB = AF$,$\therefore \triangle BDM \cong \triangle CDA$,$\therefore \angle MBD = \angle ACD$,$\therefore MB// AC$,$\because \angle ABM + \angle BAC = 180^{\circ}$,$\therefore \angle BAE + \angle CAF = 180^{\circ}$,$\because \angle BAC + \angle FAE = 360^{\circ} - (\angle BAE + \angle CAF) = 360^{\circ} - 180^{\circ} = 180^{\circ}$,$\therefore \angle ABM = \angle FAE$,在$\triangle ABM$和$\triangle EAF$中,$\begin{cases}AB = EA\\\angle ABM = \angle EAF\\MB = AF\end{cases}$,$\therefore \triangle ABM \cong \triangle EAF(SAS)$,$\therefore AM = EF$,$\because AM = 2AD$,$\therefore EF = 2AD$。
(4)延长$AD$到点$M$,使得$DM = AD$,连接$MB$,由
(3)可知$\angle BAM = \angle E$,$EF = AM = 2AD = 4$,$\because \angle BAE = \angle CAF = 90^{\circ}$,$\therefore \angle BAM + \angle EAG = 90^{\circ}$,$\therefore \angle E + \angle EAG = 90^{\circ}$,即$\angle AGE = 90^{\circ}$,同理得$\triangle ADC \cong \triangle MDB$,$\triangle ABM \cong \triangle EAF$,$S_{\triangle ABC}=S_{\triangle ABM}=S_{\triangle AEF}=\frac{1}{2}EF· AG=\frac{1}{2}×4×3 = 6$。
查看更多完整答案,请扫码查看