19. (8 分)已知$x = 2是关于x的方程x^{2}-(m + 4)x + 4m = 0$的一个实数根,并且这个方程的两个实数根恰好是等腰三角形$ABC$的两条边长.求:
(1)$m$的值;
(2)$\triangle ABC$的周长.
(1)$m$的值;
(2)$\triangle ABC$的周长.
答案:
解:
(1)把$x = 2$代入方程$x^{2}-(m + 4)x + 4m = 0$,得$4 - 2(m + 4)+4m = 0$,解得$m = 2$.
(2)方程化为$x^{2}-6x + 8 = 0$,
解得$x_{1}=2$,$x_{2}=4$.
$\because 2 + 2 = 4$,
$\therefore$等腰三角形ABC的腰长为4,底边长为2.$\therefore\triangle ABC$的周长为$4 + 4 + 2 = 10$.
(1)把$x = 2$代入方程$x^{2}-(m + 4)x + 4m = 0$,得$4 - 2(m + 4)+4m = 0$,解得$m = 2$.
(2)方程化为$x^{2}-6x + 8 = 0$,
解得$x_{1}=2$,$x_{2}=4$.
$\because 2 + 2 = 4$,
$\therefore$等腰三角形ABC的腰长为4,底边长为2.$\therefore\triangle ABC$的周长为$4 + 4 + 2 = 10$.
20. (10 分)已知关于$x的一元二次方程x^{2}-(m + 2)x + m - 1 = 0$.
(1)求证:无论$m$取何值,方程都有两个不等的实数根;
(2)如果方程的两个实数根为$x_{1}$,$x_{2}$,且$x_{1}^{2}+x_{2}^{2}-x_{1}x_{2} = 9$,求$m$的值.
(1)求证:无论$m$取何值,方程都有两个不等的实数根;
(2)如果方程的两个实数根为$x_{1}$,$x_{2}$,且$x_{1}^{2}+x_{2}^{2}-x_{1}x_{2} = 9$,求$m$的值.
答案:
(1)证明:$x^{2}-(m + 2)x + m - 1 = 0$,
这里$a = 1$,$b = -(m + 2)$,$c = m - 1$,
$\Delta = b^{2}-4ac$
$=[-(m + 2)]^{2}-4×1×(m - 1)$
$=m^{2}+4m + 4 - 4m + 4$
$=m^{2}+8$.
$\because m^{2}\geqslant0$,$\therefore\Delta>0$.
$\therefore$无论$m$取何值,方程都有两个不等的实数根.
(2)解:设方程$x^{2}-(m + 2)x + m - 1 = 0$的两个实数根为$x_{1}$,$x_{2}$,
则$x_{1}+x_{2}=m + 2$,$x_{1}x_{2}=m - 1$.
$\because x_{1}^{2}+x_{2}^{2}-x_{1}x_{2}=9$,即$(x_{1}+x_{2})^{2}-3x_{1}x_{2}=9$,$\therefore(m + 2)^{2}-3(m - 1)=9$,
整理,得$m^{2}+m - 2 = 0$.
$\therefore(m + 2)(m - 1)=0$,
解得$m_{1}=-2$,$m_{2}=1$.
$\therefore m$的值为−2或1.
(1)证明:$x^{2}-(m + 2)x + m - 1 = 0$,
这里$a = 1$,$b = -(m + 2)$,$c = m - 1$,
$\Delta = b^{2}-4ac$
$=[-(m + 2)]^{2}-4×1×(m - 1)$
$=m^{2}+4m + 4 - 4m + 4$
$=m^{2}+8$.
$\because m^{2}\geqslant0$,$\therefore\Delta>0$.
$\therefore$无论$m$取何值,方程都有两个不等的实数根.
(2)解:设方程$x^{2}-(m + 2)x + m - 1 = 0$的两个实数根为$x_{1}$,$x_{2}$,
则$x_{1}+x_{2}=m + 2$,$x_{1}x_{2}=m - 1$.
$\because x_{1}^{2}+x_{2}^{2}-x_{1}x_{2}=9$,即$(x_{1}+x_{2})^{2}-3x_{1}x_{2}=9$,$\therefore(m + 2)^{2}-3(m - 1)=9$,
整理,得$m^{2}+m - 2 = 0$.
$\therefore(m + 2)(m - 1)=0$,
解得$m_{1}=-2$,$m_{2}=1$.
$\therefore m$的值为−2或1.
查看更多完整答案,请扫码查看