2025年一遍过八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年一遍过八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年一遍过八年级数学上册人教版》

1 [2023山西中考]下列计算正确的是 ( )

A.$a^{2}\cdot a^{3}= a^{6}$
B.$(-a^{3}b)^{2}= -a^{6}b^{2}$
C.$a^{6}÷a^{3}= a^{2}$
D.$(a^{2})^{3}= a^{6}$
答案: 1 D $a^{2}\cdot a^{3}=a^{5}$,$(-a^{3}b)^{2}=a^{6}b^{2}$,$a^{6}÷ a^{3}=a^{3}$,$(a^{2})^{3}=a^{6}$.
2 计算$-(m-n)^{3}÷[2(n-m)^{2}]$的结果是( )

A.$\frac {1}{2}(n-m)$
B.$2(m-n)$
C.$-2(m-n)$
D.$\frac {1}{2}(m-n)$
答案: 2 A $-(m-n)^{3}÷ [2(n-m)^{2}]=(n-m)^{3}÷ [2(n-m)^{2}]=\frac{1}{2}(n-m)$.
3 已知$a$,$b$,$c$为正整数,且满足$2^{a}\cdot 3^{b}\cdot 4^{c}= $384,则$a+b+c$的取值不可能是 ( )

A.5
B.6
C.7
D.8
答案: 3 D 解题思路:将原方程化为$2^{a+2c}\cdot 3^{b}=2^{7}× 3$,得到$a+2c=7$,$b=1$,再根据$a$,$b$,$c$为正整数,求出$a$,$c$的值,进而求出答案.根据题意,得$2^{a+2c}\cdot 3^{b}=2^{7}× 3$,$\therefore a+2c=7$,$b=1$.$\because a$,$b$,$c$为正整数,$\therefore$当$c=1$时,$a=5$,$a+b+c=7$;当$c=2$时,$a=3$,$a+b+c=6$;当$c=3$时,$a=1$,$a+b+c=5$.$\therefore a+b+c$的值不可能是8.
4 已知$25^{a}\cdot 5^{2b}= 5^{6}$,$4^{b}÷4^{c}= 4$,则代数式$a-$3b + 4c的值是____.
答案: 4 -1 $\because 25^{a}\cdot 5^{2b}=5^{6}$,$\therefore (5^{2})^{a}\cdot 5^{2b}=5^{2a+2b}=5^{6}$,$\therefore 2a+2b=6$,$\therefore a+b=3$.$\because 4^{b}÷ 4^{c}=4$,$\therefore 4^{b-c}=4$,$\therefore b-c=1$,$\therefore a-3b + 4c=a+b-4b+4c=(a+b)-4(b-c)=3-4× 1=-1$(整体代入法的应用).
5 已知$2^{a}= 3$,$2^{b}= 6$,$2^{c}= 12$,现给出$a$,$b$,$c$之间的四个关系式:①$a+c= 2b$;②$a+b= 2c-3$;③$b+c= 2a+3$;④$b= a+2$. 其中正确的关系式是____. (填序号)
答案: 5 ①②③ $\because 2^{a}\cdot 2^{c}=2^{a+c}=3× 12=36$,$(2^{b})^{2}=2^{2b}=6^{2}=36$,$\therefore 2^{a+c}=2^{2b}$,$\therefore a+c=2b$,故①正确;$\because 2^{a}\cdot 2^{b}=2^{a+b}=3× 6=18$,$(2^{c})^{2}÷ 2^{3}=2^{2c-3}=12^{2}÷ 8=18$,$\therefore 2^{a+b}=2^{2c-3}$,$\therefore a+b=2c-3$,故②正确;$\because 2^{b}\cdot 2^{c}=2^{b+c}=6× 12=72$,$(2^{a})^{2}\cdot 2^{3}=2^{2a+3}=3^{2}× 2^{3}=72$,$\therefore 2^{b+c}=2^{2a+3}$,$\therefore b+c=2a+3$,故③正确;$\because 2^{a}\cdot 2^{2}=2^{a+2}=3× 4=12$,$2^{b}=6$,$\therefore 2^{a+2}\neq 2^{b}$,$\therefore a+2\neq b$,故④不正确.综上,正确的关系式有①②③.
6 计算:
(1)$(a^{5})^{3}\cdot (a^{2})^{4}÷a^{12}÷(a^{2})^{5}$;
答案: 6 解:
(1)$(a^{5})^{3}\cdot (a^{2})^{4}÷ a^{12}÷ (a^{2})^{5}$$=a^{15}\cdot a^{8}÷ a^{12}÷ a^{10}$$=a^{23}÷ a^{12}÷ a^{10}$$=a$.
(2)$(-2x^{2})^{3}-x\cdot x^{5}+(-3x^{3})^{2}$$=-8x^{6}-x^{6}+9x^{6}$$=0$.
7 [2024北京二十二中期中]已知$a= 2^{40}$,$b= 3^{32}$,$c= 4^{24}$,则$a$,$b$,$c$的大小关系为 ( )

A.$a\lt b\lt c$
B.$a\lt c\lt b$
C.$b\lt a\lt c$
D.$c\lt b\lt a$
答案: 7 B $a=2^{40}=(2^{5})^{8}=32^{8}$,$b=3^{32}=(3^{4})^{8}=81^{8}$,$c=4^{24}=(4^{3})^{8}=64^{8}$.$\because 32<64<81$,$\therefore a<c<b$.
8 已知$2^{a}= 10$,$2^{b}= 5$,$2^{c}= 80$,则$2^{c-2b+a}$的值是____.
答案: 8 32 $2^{c-2b+a}=2^{c}÷ 2^{2b}\cdot 2^{a}=2^{c}÷ (2^{b})^{2}\cdot 2^{a}=80÷ 5^{2}× 10=80÷ 25× 10=32$.
9 计算:
(1)$(-0.125)^{15}×(2^{15})^{3}+(\frac {5}{13})^{2025}×(-2\frac {3}{5})^{2024}$;
(2)$0.25^{2024}×(-4)^{2025}-8^{675}×0.5^{2026}$.
答案: 9 解:
(1)$(-0.125)^{15}× (2^{15})^{3}+(\frac{5}{13})^{2025}× (-2\frac{3}{5})^{2024}$$=(-\frac{1}{8})^{15}× 8^{15}+\frac{5}{13}× (\frac{5}{13})^{2024}× (-\frac{13}{5})^{2024}$$=(-\frac{1}{8}× 8)^{15}+\frac{5}{13}× [-(\frac{5}{13}× \frac{13}{5})]^{2024}$$=-1+\frac{5}{13}$$=-\frac{8}{13}$.
(2)$0.25^{2024}× (-4)^{2025}-8^{675}× 0.5^{2026}$$=0.25^{2024}× (-4)^{2024}× (-4)-(2^{3})^{675}× 0.5^{2026}$$=0.25^{2024}× (-4)^{2024}× (-4)-2^{2025}× 0.5^{2026}$$=[0.25× (-4)]^{2024}× (-4)-(2× 0.5)^{2025}× 0.5$$=(-1)^{2024}× (-4)-1^{2025}× 0.5$$=-4-0.5$$=-4.5$.

查看更多完整答案,请扫码查看

关闭