2025年王朝霞各地期末试卷精选九年级数学华师大版河南专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年王朝霞各地期末试卷精选九年级数学华师大版河南专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
18. 已知抛物线$y = ax^{2}-2ax - 3 + 2a^{2}(a \neq 0)$.
(1)求这条抛物线的对称轴;
(2)若该抛物线的顶点在$x$轴上,求其解析式;
(3)若点$P(m,y_{1})$,$Q(3,y_{2})$在该抛物线上,且$y_{1} < y_{2}$,求$m$的取值范围.
(1)求这条抛物线的对称轴;
(2)若该抛物线的顶点在$x$轴上,求其解析式;
(3)若点$P(m,y_{1})$,$Q(3,y_{2})$在该抛物线上,且$y_{1} < y_{2}$,求$m$的取值范围.
答案:
(1)$\because$抛物线$y = ax^{2}-2ax - 3 + 2a^{2}=a(x - 1)^{2}+2a^{2}-a - 3$,$\therefore$这条抛物线的对称轴为直线$x = 1$.
(2)$\because$这条抛物线的对称轴为直线$x = 1$,$\therefore$抛物线顶点的横坐标为1.$\because$抛物线的顶点在$x$轴上,$\therefore$当$x = 1$时,$y = 2a^{2}-a - 3 = 0$. 解得$a_{1}=\frac{3}{2}$,$a_{2}=-1$.$\therefore$抛物线解析式为$y=\frac{3}{2}x^{2}-3x+\frac{3}{2}$或$y=-x^{2}+2x - 1$.
(3)$\because$抛物线的对称轴为直线$x = 1$,$\therefore$点$Q(3,y_{2})$关于$x = 1$对称的点的坐标为$(-1,y_{2})$. 当$a > 0$时,$\because y_{1}<y_{2}$,$\therefore -1 < m < 3$. 当$a < 0$时,$\because y_{1}<y_{2}$,$\therefore m < -1$或$m > 3$.
(1)$\because$抛物线$y = ax^{2}-2ax - 3 + 2a^{2}=a(x - 1)^{2}+2a^{2}-a - 3$,$\therefore$这条抛物线的对称轴为直线$x = 1$.
(2)$\because$这条抛物线的对称轴为直线$x = 1$,$\therefore$抛物线顶点的横坐标为1.$\because$抛物线的顶点在$x$轴上,$\therefore$当$x = 1$时,$y = 2a^{2}-a - 3 = 0$. 解得$a_{1}=\frac{3}{2}$,$a_{2}=-1$.$\therefore$抛物线解析式为$y=\frac{3}{2}x^{2}-3x+\frac{3}{2}$或$y=-x^{2}+2x - 1$.
(3)$\because$抛物线的对称轴为直线$x = 1$,$\therefore$点$Q(3,y_{2})$关于$x = 1$对称的点的坐标为$(-1,y_{2})$. 当$a > 0$时,$\because y_{1}<y_{2}$,$\therefore -1 < m < 3$. 当$a < 0$时,$\because y_{1}<y_{2}$,$\therefore m < -1$或$m > 3$.
19.〔安阳市〕如图,抛物线$y = ax^{2}+bx + 3$与$x$轴交于点$A$,$B(1,0)$,与$y$轴交于点$C$,且$OA = OC$.
(1)求抛物线的解析式及顶点坐标;
(2)当$k \leq x < 0$,且$k < -1$时,$y$的最大值和最小值分别为$m$,$n$,且$m + n = -1$,求$k$的值.

(1)求抛物线的解析式及顶点坐标;
(2)当$k \leq x < 0$,且$k < -1$时,$y$的最大值和最小值分别为$m$,$n$,且$m + n = -1$,求$k$的值.
答案:
(1)在$y = ax^{2}+bx + 3$中,令$x = 0$,得$y = 3$.$\therefore$点$C$的坐标为$(0,3)$.$\therefore OC = 3$.$\because OA = OC$,点$A$在$x$负半轴上,$\therefore$点$A$的坐标为$(-3,0)$. 把点$A(-3,0)$,$B(1,0)$代入$y = ax^{2}+bx + 3$,得$\begin{cases}9a - 3b + 3 = 0,\\a + b + 3 = 0.\end{cases}$解得$\begin{cases}a=-1,\\b=-2.\end{cases}$$\therefore$抛物线的解析式为$y=-x^{2}-2x + 3$.$\because y=-x^{2}-2x + 3=-(x + 1)^{2}+4$,$\therefore$抛物线的顶点坐标为$(-1,4)$.
(2)$\because k\leqslant x < 0$,且$k < -1$,$\therefore$顶点$(-1,4)$在该段抛物线上.$\therefore y$的最大值为4,即$m = 4$.$\because m + n=-1$,$\therefore n=-1 - m=-5$. 令$y=-x^{2}-2x + 3=-5$,解得$x_{1}=-4$,$x_{2}=2$.$\because k < -1$,$\therefore k=-4$.
(1)在$y = ax^{2}+bx + 3$中,令$x = 0$,得$y = 3$.$\therefore$点$C$的坐标为$(0,3)$.$\therefore OC = 3$.$\because OA = OC$,点$A$在$x$负半轴上,$\therefore$点$A$的坐标为$(-3,0)$. 把点$A(-3,0)$,$B(1,0)$代入$y = ax^{2}+bx + 3$,得$\begin{cases}9a - 3b + 3 = 0,\\a + b + 3 = 0.\end{cases}$解得$\begin{cases}a=-1,\\b=-2.\end{cases}$$\therefore$抛物线的解析式为$y=-x^{2}-2x + 3$.$\because y=-x^{2}-2x + 3=-(x + 1)^{2}+4$,$\therefore$抛物线的顶点坐标为$(-1,4)$.
(2)$\because k\leqslant x < 0$,且$k < -1$,$\therefore$顶点$(-1,4)$在该段抛物线上.$\therefore y$的最大值为4,即$m = 4$.$\because m + n=-1$,$\therefore n=-1 - m=-5$. 令$y=-x^{2}-2x + 3=-5$,解得$x_{1}=-4$,$x_{2}=2$.$\because k < -1$,$\therefore k=-4$.
查看更多完整答案,请扫码查看