2025年王朝霞各地期末试卷精选九年级数学华师大版河南专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年王朝霞各地期末试卷精选九年级数学华师大版河南专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年王朝霞各地期末试卷精选九年级数学华师大版河南专版》

8.〔信阳模拟〕如图,在矩形ABCD中,AB = 2BC,在CD上取一点E,使AE = AB,则∠EBC的度数为 ( )


A. 30°
B. 15°
C. 45°
D. 不能确定
答案: B
9. 在直角三角形ABC中,若2AB = AC,则cosC = ( )
A. $\frac{\sqrt{3}}{2}$
B. $\frac{2\sqrt{5}}{5}$
C. $\frac{\sqrt{3}}{2}$或$\frac{2\sqrt{5}}{5}$
D. $\frac{\sqrt{3}}{2}$或$\frac{\sqrt{5}}{5}$
答案: C 【解析】设$AB = x$,则$AC = 2x$. 分两种情况:
①若$\angle B = 90^{\circ}$,则$BC=\sqrt{(2x)^{2}-x^{2}}=\sqrt{3}x$.
$\therefore\cos C=\frac{BC}{AC}=\frac{\sqrt{3}x}{2x}=\frac{\sqrt{3}}{2}$.
②若$\angle A = 90^{\circ}$,则$BC=\sqrt{(2x)^{2}+x^{2}}=\sqrt{5}x$.
$\therefore\cos C=\frac{AC}{BC}=\frac{2x}{\sqrt{5}x}=\frac{2\sqrt{5}}{5}$.
综上所述,$\cos C$的值为$\frac{\sqrt{3}}{2}$或$\frac{2\sqrt{5}}{5}$. 故选 C.
10.〔开封市〕如图,已知第一象限内的点A在反比例函数y = $\frac{2}{x}$的图象上,第二象限内的点B在反比例函数y = $\frac{k}{x}$的图象上,且OA⊥OB,tanA = $\sqrt{3}$,则k的值为 ( )

A. -6
B. -2$\sqrt{3}$
C. -3
D. -$\sqrt{3}$
答案:
A 【解析】如图,过点$A$作$AC\perp x$轴于点$C$,过点$B$作$BD\perp x$轴于点$D$.

则$\angle ACO=\angle BDO = 90^{\circ}$.$\therefore\angle BOD+\angle OBD = 90^{\circ}$.$\because OA\perp OB$,$\therefore\angle BOD+\angle AOC = 90^{\circ}$.$\therefore\angle OBD=\angle AOC$.$\therefore\triangle OBD\sim\triangle AOC$.
$\because\tan\angle BAO=\frac{OB}{OA}=\sqrt{3}$,$\therefore\frac{S_{\triangle OBD}}{S_{\triangle AOC}}=\left(\frac{OB}{OA}\right)^{2}=3$.$\because S_{\triangle AOC}=\frac{1}{2}\times2 = 1$,$\therefore S_{\triangle OBD}=3S_{\triangle AOC}=3$.
$\therefore k=-6$. 故选 A.
11. 已知△ABC的内角满足|$\sqrt{3}$tanA - 3| + |$\sqrt{2}$cosB - 1| = 0,则∠C = ________度.
答案: 75
12. 已知△AOC,如图,建立平面直角坐标系,则点A的坐标用c表示为____________.

答案: (c\cos\alpha,c\sin\alpha)
13.〔青岛市〕如图,在△ABC中,∠BAC = 90°,AB = AC,点D为边AC的中点,DE⊥BC于点E,连结BD,则tan∠DBC的值为_______.

答案: $\frac{1}{3}$
14. 已知sin(A + B) = sinA·cosB + cosA·sinB. 例如:sin(10° + 20°) = sin10°·cos20° + cos10°·sin20°. 则sin75° = ________.
答案: $\frac{\sqrt{6}+\sqrt{2}}{4}$
15. 如图,某梯子长10 m,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点B处,底端落在水平地面的点A处. 如果将梯子底端向墙面靠近,使梯子与地面所成角为β,且sinα = cosβ = $\frac{3}{5}$,那么梯子顶端上升了________m.

答案:
2 【解析】如图,根据题意可知,$\angle ACB = 90^{\circ}$,$AB = ED = 10$.$\because\sin\alpha=\frac{BC}{AB}=\frac{3}{5}$,
$\therefore\frac{BC}{10}=\frac{3}{5}$.$\therefore BC = 6$.$\because\cos\beta=\frac{EC}{ED}=\frac{3}{5}$,
$\therefore\frac{EC}{10}=\frac{3}{5}$.$\therefore EC = 6$.$\therefore$在$Rt\triangle CDE$中,$CD=\sqrt{ED^{2}-EC^{2}} = 8$.$\therefore BD = CD - BC = 8 - 6 = 2(\text{m})$,即梯子顶端上升了$2\text{ m}$.
AB梯子地面
16. 计算:
(1)$(\frac{1}{3})^{-1}$ - |-2 + 3tan30°| + ($\sqrt{2}$ - 1.41)⁰; (2)2sin60° + $\frac{2}{\tan45° - \tan60°}$ - cos²30°.
答案: 解:
(1)原式$=3-\vert - 2+\sqrt{3}\vert+1 = 3-(2 - \sqrt{3})+1 = 2+\sqrt{3}$.
(2)原式$=2\times\frac{\sqrt{3}}{2}+\frac{2}{1 - \sqrt{3}}-\left(\frac{\sqrt{3}}{2}\right)^{2}$
$=\sqrt{3}-\sqrt{3}-1-\frac{3}{4}$
$=-\frac{7}{4}$.

查看更多完整答案,请扫码查看

关闭