2025年名校真题卷七年级数学上册沪科版安徽专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校真题卷七年级数学上册沪科版安徽专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
17. 先化简,再求值:$ -x^{2}y + (2x^{2}y - 3xy^{2}) - \frac{1}{3}(6x^{2}y - 3xy^{2}) $,其中$ x = -1 $, $ y = 1 $.
答案:
17. 解:原式$= -x^{2}y + 2x^{2}y - 3xy^{2} - 2x^{2}y + xy^{2} = -x^{2}y - 2xy^{2}$.当$x = -1$,$y = 1$时,原式$= -(-1)^{2}×1 - 2×(-1)×1^{2} = -1 + 2 = 1$.
18. 已知代数式$ A = 3x^{2} - x + 1 $,马小虎同学在做整式加减运算时,误将“$ A - B $”看成“$ A + B $”了,计算的结果是$ 2x^{2} - 3x - 2 $.
(1)请帮马小虎同学求出正确的结果;
(2)x是最大的负整数,将x代入(1)的结果求值.
(1)请帮马小虎同学求出正确的结果;
(2)x是最大的负整数,将x代入(1)的结果求值.
答案:
18. 解:
(1)根据题意可知,$B = (2x^{2} - 3x - 2) - (3x^{2} - x + 1) = 2x^{2} - 3x - 2 - 3x^{2} + x - 1 = -x^{2} - 2x - 3$,则$A - B = (3x^{2} - x + 1) - (-x^{2} - 2x - 3) = 3x^{2} - x + 1 + x^{2} + 2x + 3 = 4x^{2} + x + 4$.
(2)$\because x$是最大的负整数,$\therefore x = -1$,则原式$= 4×(-1)^{2} - 1 + 4 = 4 - 1 + 4 = 7$.
(1)根据题意可知,$B = (2x^{2} - 3x - 2) - (3x^{2} - x + 1) = 2x^{2} - 3x - 2 - 3x^{2} + x - 1 = -x^{2} - 2x - 3$,则$A - B = (3x^{2} - x + 1) - (-x^{2} - 2x - 3) = 3x^{2} - x + 1 + x^{2} + 2x + 3 = 4x^{2} + x + 4$.
(2)$\because x$是最大的负整数,$\therefore x = -1$,则原式$= 4×(-1)^{2} - 1 + 4 = 4 - 1 + 4 = 7$.
19. 数学中,运用整体思想的方法在求代数式的值中非常重要.例如:已知$ a^{2} + 2a = 1 $,则代数式$ 2a^{2} + 4a + 4 = 2(a^{2} + 2a) + 4 = 2×1 + 4 = 6 $.请你根据上述材料解答下列问题:
(1)若$ x^{2} - 3x = 2 $,求$ 1 + 3x - x^{2} $的值;
(2)当$ x = 1 $时,代数式$ px^{3} + qx + 1 $的值是5,求当$ x = -1 $时,代数式$ px^{3} + qx + 1 $的值.
(1)若$ x^{2} - 3x = 2 $,求$ 1 + 3x - x^{2} $的值;
(2)当$ x = 1 $时,代数式$ px^{3} + qx + 1 $的值是5,求当$ x = -1 $时,代数式$ px^{3} + qx + 1 $的值.
答案:
19. 解:
(1)根据题意,得$1 + 3x - x^{2} = 1 - (x^{2} - 3x) = 1 - 2 = -1$.
(2)$\because$当$x = 1$时,$px^{3} + qx + 1 = 5$,$\therefore p + q + 1 = 5.\therefore p + q = 4$.当$x = -1$时,$p·(-1)^{3} + q·(-1) + 1 = -p - q + 1 = -(p + q) + 1 = -4 + 1 = -3$.
(1)根据题意,得$1 + 3x - x^{2} = 1 - (x^{2} - 3x) = 1 - 2 = -1$.
(2)$\because$当$x = 1$时,$px^{3} + qx + 1 = 5$,$\therefore p + q + 1 = 5.\therefore p + q = 4$.当$x = -1$时,$p·(-1)^{3} + q·(-1) + 1 = -p - q + 1 = -(p + q) + 1 = -4 + 1 = -3$.
查看更多完整答案,请扫码查看