2025年名校真题卷七年级数学上册沪科版安徽专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校真题卷七年级数学上册沪科版安徽专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
21. 利用折纸可以作出角平分线,按图1折叠,则$OC$为$\angle AOB$的平分线.按图2、图3折叠长方形纸片,$OC$,$OD$均是折痕,折叠后,点$A$落在点$A'$处,点$B$落在点$B'$处,连接$OA'$.
(1) 如图2,若点$B'$恰好落在$OA'$上,且$\angle AOC = 32°$,则$\angle BOD =$
(2) 如图3,当点$B'$在$\angle COA'$的内部时,连接$OB'$.若$\angle AOC = 44°$,$\angle BOD = 61°$,求$\angle A'OB'$的度数.

(1) 如图2,若点$B'$恰好落在$OA'$上,且$\angle AOC = 32°$,则$\angle BOD =$
58°
;(2) 如图3,当点$B'$在$\angle COA'$的内部时,连接$OB'$.若$\angle AOC = 44°$,$\angle BOD = 61°$,求$\angle A'OB'$的度数.
答案:
21.解:
(1)58° [答案详解]由题意,得∠AOC = ∠A′OC,∠BOD = ∠B′OD.
∵∠AOC + ∠A′OC + ∠BOD + ∠B′OD = 180°,∠AOC = 32°,
∴∠BOD = $\frac{1}{2}$×(180° - 2×32°) = 58°.故答案为:58°.
(2)由题意,得∠AOC = ∠A′OC,∠BOD = ∠B′OD.
∵∠AOC + ∠A′OC + ∠A′OD + ∠BOD = 180°,∠AOC = 44°,∠BOD = 61°,
∴∠A′OD = 180° - 2×44° - 61° = 31°.
∴∠A′OB′ = ∠B′OD - ∠A′OD = 30°.
(1)58° [答案详解]由题意,得∠AOC = ∠A′OC,∠BOD = ∠B′OD.
∵∠AOC + ∠A′OC + ∠BOD + ∠B′OD = 180°,∠AOC = 32°,
∴∠BOD = $\frac{1}{2}$×(180° - 2×32°) = 58°.故答案为:58°.
(2)由题意,得∠AOC = ∠A′OC,∠BOD = ∠B′OD.
∵∠AOC + ∠A′OC + ∠A′OD + ∠BOD = 180°,∠AOC = 44°,∠BOD = 61°,
∴∠A′OD = 180° - 2×44° - 61° = 31°.
∴∠A′OB′ = ∠B′OD - ∠A′OD = 30°.
22. (1) 如图,$C$是线段$AB$的中点.若点$D$在线段$CB$上,且$DB = 3.5$cm,$AD = 6.5$cm,求线段$CD$的长;
(2) 若将(1)中的“点$D$在线段$CB$上”改为“点$D$在直线$CB$上”,其他条件不变,请画出相应的示意图,并求出此时线段$CD$的长;
(3) 若线段$AB = 12$cm,点$C$在线段$AB$上,$E$,$F$分别是线段$AC$,$BC$的中点.
① 当$C$恰好是$AB$的中点时,$EF =$
② 当$AC = 4$cm时,$EF =$
③ 当点$C$在线段$AB$上运动时(点$C$不与点$A$,$B$重合),求线段$EF$的长.

(2) 若将(1)中的“点$D$在线段$CB$上”改为“点$D$在直线$CB$上”,其他条件不变,请画出相应的示意图,并求出此时线段$CD$的长;
(3) 若线段$AB = 12$cm,点$C$在线段$AB$上,$E$,$F$分别是线段$AC$,$BC$的中点.
① 当$C$恰好是$AB$的中点时,$EF =$
6
cm;② 当$AC = 4$cm时,$EF =$
6
cm;③ 当点$C$在线段$AB$上运动时(点$C$不与点$A$,$B$重合),求线段$EF$的长.
答案:
22.解:
(1)
∵DB = 3.5cm,AD = 6.5cm,
∴AB = AD + DB = 10cm.
∵C为AB的中点,
∴CB = 5cm.
∴CD = CB - DB = 5 - 3.5 = 1.5(cm).
(2)根据题意,分为两种情况:如图1,当点D在线段BC上时,则CD = 1.5cm;
如图2,当点D在CB的延长线上,则AB = AD - DB = 3cm.
∴BC = 1.5cm.
∴CD = 1.5 + 3.5 = 5(cm).
∴此时线段CD的长为1.5cm或5cm.
(3)①6 [答案详解]由题意,得AC = BC = 6cm.
∵E,F分别为线段AC,BC的中点,
∴CE = CF = 3cm.
∴EF = CE + CF = 6cm.故答案为:6.
②6 [答案详解]
∵AC = 4cm,
∴BC = 12 - 4 = 8(cm).
∵E,F分别为线段AC,BC的中点,
∴CE = 2cm,CF = 4cm.
∴EF = CE + CF = 6cm.故答案为6.
③设AC = xcm,则BC = (12 - x)cm.又
∵E,F分别为AC,BC中点,
∴CE = $\frac{x}{2}$cm,CF = $\frac{12 - x}{2}$cm.
∴EF = CE + CF = $\frac{x}{2}$ + $\frac{12 - x}{2}$ = 6(cm).
22.解:
(1)
∵DB = 3.5cm,AD = 6.5cm,
∴AB = AD + DB = 10cm.
∵C为AB的中点,
∴CB = 5cm.
∴CD = CB - DB = 5 - 3.5 = 1.5(cm).
(2)根据题意,分为两种情况:如图1,当点D在线段BC上时,则CD = 1.5cm;
如图2,当点D在CB的延长线上,则AB = AD - DB = 3cm.
∴BC = 1.5cm.
∴CD = 1.5 + 3.5 = 5(cm).
∴此时线段CD的长为1.5cm或5cm.
(3)①6 [答案详解]由题意,得AC = BC = 6cm.
∵E,F分别为线段AC,BC的中点,
∴CE = CF = 3cm.
∴EF = CE + CF = 6cm.故答案为:6.
②6 [答案详解]
∵AC = 4cm,
∴BC = 12 - 4 = 8(cm).
∵E,F分别为线段AC,BC的中点,
∴CE = 2cm,CF = 4cm.
∴EF = CE + CF = 6cm.故答案为6.
③设AC = xcm,则BC = (12 - x)cm.又
∵E,F分别为AC,BC中点,
∴CE = $\frac{x}{2}$cm,CF = $\frac{12 - x}{2}$cm.
∴EF = CE + CF = $\frac{x}{2}$ + $\frac{12 - x}{2}$ = 6(cm).
查看更多完整答案,请扫码查看