第10页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
8. 将两块全等的含$30^{\circ}$角的三角尺按如图①所示的方式摆放在一起,设较短直角边的长为1。如图②,将$Rt\triangle BCD$沿射线$BD$方向平移,得到$Rt\triangle B^{\prime}C^{\prime}D^{\prime}$,连接$BC^{\prime}$,$AD^{\prime}$。在平移的过程中,当点$B$的移动距离为

$\frac{\sqrt{3}}{3}$
时,四边形$ABC^{\prime}D^{\prime}$为矩形。
答案:
8. $\frac{\sqrt{3}}{3}$ 解析:当四边形$ABC'D'$是矩形时,$\angle ABC' = 90^{\circ}$。又
$\because \angle ABD = 30^{\circ}$,$\therefore \angle B'BC' = \angle ABC' - \angle ABD = 60^{\circ}$。易得
$\triangle BB'C'$是直角三角形,且$\angle BB'C' = 90^{\circ}$。$\therefore \angle BC'B' = 30^{\circ}$。
$\therefore BC' = 2BB'$。$\because B'C' = 1$,$\therefore$结合勾股定理,易得$BB' = \frac{\sqrt{3}}{3}$。
$\therefore$当点$B$的移动距离为$\frac{\sqrt{3}}{3}$时,四边形$ABC'D'$为矩形。
$\because \angle ABD = 30^{\circ}$,$\therefore \angle B'BC' = \angle ABC' - \angle ABD = 60^{\circ}$。易得
$\triangle BB'C'$是直角三角形,且$\angle BB'C' = 90^{\circ}$。$\therefore \angle BC'B' = 30^{\circ}$。
$\therefore BC' = 2BB'$。$\because B'C' = 1$,$\therefore$结合勾股定理,易得$BB' = \frac{\sqrt{3}}{3}$。
$\therefore$当点$B$的移动距离为$\frac{\sqrt{3}}{3}$时,四边形$ABC'D'$为矩形。
9. (2022·巴中)如图,在$□ ABCD$中,$E$为$BC$的中点,连接$AE$并延长,交$DC$的延长线于点$F$,延长$EC$至点$G$,使$CG=CE$,连接$DG$,$DE$,$FG$。
(1)求证:$\triangle ABE\cong\triangle FCE$;
(2)若$AD=2AB$,求证:四边形$DEFG$是矩形。

(1)求证:$\triangle ABE\cong\triangle FCE$;
(2)若$AD=2AB$,求证:四边形$DEFG$是矩形。
答案:
9.
(1)$\because$四边形$ABCD$是平行四边形,$\therefore AB// CD$。
$\therefore \angle EAB = \angle EFC$。$\because E$为$BC$的中点,$\therefore EB = EC$。在
$\triangle ABE$和$\triangle FCE$中,$\because \angle EAB = \angle EFC$,$\angle BEA = \angle CEF$,
$EB = EC$,$\therefore \triangle ABE \cong \triangle FCE$
(2)$\because \triangle ABE \cong \triangle FCE$,
$\therefore AB = FC$。$\because$四边形$ABCD$是平行四边形,$\therefore AB = DC$,
$AD = BC$。$\therefore DC = FC$。又$\because CG = CE$,$\therefore$四边形$DEFG$是平行四边形。$\because CE = BE$,$CG = CE$,$\therefore BE = CE = CG$。$\therefore BC = EG$。
$\because AD = BC = EG = 2AB$,$DF = DC + FC = 2DC = 2AB$,
$\therefore EG = DF$。$\therefore$四边形$DEFG$是矩形
(1)$\because$四边形$ABCD$是平行四边形,$\therefore AB// CD$。
$\therefore \angle EAB = \angle EFC$。$\because E$为$BC$的中点,$\therefore EB = EC$。在
$\triangle ABE$和$\triangle FCE$中,$\because \angle EAB = \angle EFC$,$\angle BEA = \angle CEF$,
$EB = EC$,$\therefore \triangle ABE \cong \triangle FCE$
(2)$\because \triangle ABE \cong \triangle FCE$,
$\therefore AB = FC$。$\because$四边形$ABCD$是平行四边形,$\therefore AB = DC$,
$AD = BC$。$\therefore DC = FC$。又$\because CG = CE$,$\therefore$四边形$DEFG$是平行四边形。$\because CE = BE$,$CG = CE$,$\therefore BE = CE = CG$。$\therefore BC = EG$。
$\because AD = BC = EG = 2AB$,$DF = DC + FC = 2DC = 2AB$,
$\therefore EG = DF$。$\therefore$四边形$DEFG$是矩形
10. 如图,在$\triangle ABC$中,$O$是边$AC$上的一个动点,过点$O$作直线$EF// BC$,分别与$\angle ACB$,$\triangle ABC$的外角$\angle ACD$的平分线交于点$E$,$F$,连接$AE$,$AF$。
(1)若$CE=8$,$CF=6$,求$OC$的长。
(2)当点$O$在边$AC$上运动到什么位置时,四边形$AECF$是矩形?请说明理由。

(1)若$CE=8$,$CF=6$,求$OC$的长。
(2)当点$O$在边$AC$上运动到什么位置时,四边形$AECF$是矩形?请说明理由。
答案:
10.
(1)$\because EF$与$\angle ACB$的平分线交于点$E$,与$\angle ACD$的平分
线交于点$F$,$\therefore \angle OCE = \angle BCE$,$\angle OCF = \angle DCF$。$\because EF// BC$,$\therefore \angle OEC = \angle BCE$,$\angle OFC = \angle DCF$。$\therefore \angle OEC = \angle OCE$,$\angle OFC = \angle OCF$。$\therefore OE = OC$,$OF = OC$。$\therefore OE = OF$,
即$O$是$EF$的中点。$\because \angle OCE + \angle BCE + \angle OCF + \angle DCF =$
$180^{\circ}$,$\therefore \angle ECF = \angle OCE + \angle OCF = \frac{1}{2}(\angle ACB + \angle ACD) =$
$90^{\circ}$。$\because CE = 8$,$CF = 6$,$\therefore$在$Rt\triangle CEF$中,根据勾股定理,得
$EF = \sqrt{CE^{2} + CF^{2}} = \sqrt{8^{2} + 6^{2}} = 10$。$\therefore OC = OE = \frac{1}{2}EF = 5$。
(2)当点$O$在边$AC$上运动到$AC$的中点处时,四边形$AECF$
是矩形 理由:当点$O$在边$AC$上运动到$AC$的中点处时,
$OA = OC$。$\because OE = OF$,$\therefore$四边形$AECF$是平行四边形。由
(1),得$\angle ECF = 90^{\circ}$,$\therefore$四边形$AECF$是矩形。
(1)$\because EF$与$\angle ACB$的平分线交于点$E$,与$\angle ACD$的平分
线交于点$F$,$\therefore \angle OCE = \angle BCE$,$\angle OCF = \angle DCF$。$\because EF// BC$,$\therefore \angle OEC = \angle BCE$,$\angle OFC = \angle DCF$。$\therefore \angle OEC = \angle OCE$,$\angle OFC = \angle OCF$。$\therefore OE = OC$,$OF = OC$。$\therefore OE = OF$,
即$O$是$EF$的中点。$\because \angle OCE + \angle BCE + \angle OCF + \angle DCF =$
$180^{\circ}$,$\therefore \angle ECF = \angle OCE + \angle OCF = \frac{1}{2}(\angle ACB + \angle ACD) =$
$90^{\circ}$。$\because CE = 8$,$CF = 6$,$\therefore$在$Rt\triangle CEF$中,根据勾股定理,得
$EF = \sqrt{CE^{2} + CF^{2}} = \sqrt{8^{2} + 6^{2}} = 10$。$\therefore OC = OE = \frac{1}{2}EF = 5$。
(2)当点$O$在边$AC$上运动到$AC$的中点处时,四边形$AECF$
是矩形 理由:当点$O$在边$AC$上运动到$AC$的中点处时,
$OA = OC$。$\because OE = OF$,$\therefore$四边形$AECF$是平行四边形。由
(1),得$\angle ECF = 90^{\circ}$,$\therefore$四边形$AECF$是矩形。
查看更多完整答案,请扫码查看