2025年课时分层作业本九年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年课时分层作业本九年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年课时分层作业本九年级数学上册北师大版》

12.(☆)[教材变式]某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行x列,则可列方程为______,解得x=______.
答案: $(8 + x)(10 + x) = 8×10 + 40$;2
解析:原有人数为$8×10 = 80$人,增加后人数为$80 + 40 = 120$人,
列方程为$(8 + x)(10 + x) = 120$,展开得$x^2 + 18x + 80 = 120$,$x^2 + 18x - 40 = 0$,解得$x = 2$或$x = -20$(舍去),故方程为$(8 + x)(10 + x) = 8×10 + 40$,解得$x = 2$。
13.解方程:
(1)$(x + 6)^2 = 0$
(2)$4(x + 1)^2 = 16$
(3)$x^2 + 2x - 3 = 0$
(4)$x^2 - 5x - 6 = 0$
(5)$(x + 8)(x - 6) = 72$
(6)$x^2 - 6 = -3(x - 8)$
答案:
(1)解:$(x + 6)^2 = 0$,
$x + 6 = 0$,
$x_1 = x_2 = -6$;
(2)解:$4(x + 1)^2 = 16$,
$(x + 1)^2 = 4$,
$x + 1 = ±2$,
$x + 1 = 2$或$x + 1 = -2$,
$x_1 = 1$,$x_2 = -3$;
(3)解:$x^2 + 2x - 3 = 0$,
$x^2 + 2x = 3$,
$x^2 + 2x + 1 = 3 + 1$,
$(x + 1)^2 = 4$,
$x + 1 = ±2$,
$x_1 = 1$,$x_2 = -3$;
(4)解:$x^2 - 5x - 6 = 0$,
$x^2 - 5x = 6$,
$x^2 - 5x + \frac{25}{4} = 6 + \frac{25}{4}$,
$\left(x - \frac{5}{2}\right)^2 = \frac{49}{4}$,
$x - \frac{5}{2} = ±\frac{7}{2}$,
$x_1 = 6$,$x_2 = -1$;
(5)解:$(x + 8)(x - 6) = 72$,
$x^2 + 2x - 48 = 72$,
$x^2 + 2x = 120$,
$x^2 + 2x + 1 = 120 + 1$,
$(x + 1)^2 = 121$,
$x + 1 = ±11$,
$x_1 = 10$,$x_2 = -12$;
(6)解:$x^2 - 6 = -3(x - 8)$,
$x^2 - 6 = -3x + 24$,
$x^2 + 3x - 30 = 0$,
$x^2 + 3x = 30$,
$x^2 + 3x + \frac{9}{4} = 30 + \frac{9}{4}$,
$\left(x + \frac{3}{2}\right)^2 = \frac{129}{4}$,
$x + \frac{3}{2} = ±\frac{\sqrt{129}}{2}$,
$x_1 = \frac{-3 + \sqrt{129}}{2}$,$x_2 = \frac{-3 - \sqrt{129}}{2}$。
14.(☆)[新方法]阅读材料:若$m^2 - 2mn + 2n^2 - 8n + 16 = 0$,求m,n的值.
解:$\because m^2 - 2mn + 2n^2 - 8n + 16 = 0$,$\therefore (m^2 - 2mn + n^2) + (n^2 - 8n + 16) = 0$,$\therefore (m - n)^2 + (n - 4)^2 = 0$,$\therefore (m - n)^2 = 0$,$(n - 4)^2 = 0$,$\therefore n = 4$,$m = 4$.
根据你的发现,探究下面的问题:
(1)已知$a^2 + 6ab + 10b^2 + 2b + 1 = 0$,求a,b的值;
(2)已知△ABC的三边长a,b,c都是正整数,且满足$2a^2 + b^2 - 4a - 6b + 11 = 0$,求△ABC的周长.
答案:
(1)解:$a^2 + 6ab + 10b^2 + 2b + 1 = 0$,
$a^2 + 6ab + 9b^2 + b^2 + 2b + 1 = 0$,
$(a + 3b)^2 + (b + 1)^2 = 0$,
$\therefore a + 3b = 0$,$b + 1 = 0$,
解得$b = -1$,$a = 3$;
(2)解:$2a^2 + b^2 - 4a - 6b + 11 = 0$,
$2(a^2 - 2a + 1) + (b^2 - 6b + 9) = 0$,
$2(a - 1)^2 + (b - 3)^2 = 0$,
$\therefore a - 1 = 0$,$b - 3 = 0$,
解得$a = 1$,$b = 3$,
根据三角形三边关系,$3 - 1 < c < 3 + 1$,即$2 < c < 4$,
∵$c$是正整数,
∴$c = 3$,
△ABC的周长为$1 + 3 + 3 = 7$。

查看更多完整答案,请扫码查看

关闭