1. 方程$(x - 1)^2 - 9 = 0$的解是( )
A. $x_1 = 4$,$x_2 = -2$
B. $x_1 = -4$,$x_2 = -2$
C. $x_1 = 4$,$x_2 = 2$
D. $x_1 = -4$,$x_2 = 2$
A. $x_1 = 4$,$x_2 = -2$
B. $x_1 = -4$,$x_2 = -2$
C. $x_1 = 4$,$x_2 = 2$
D. $x_1 = -4$,$x_2 = 2$
答案:
A
解析:$(x - 1)^2 - 9 = 0$,
$(x - 1)^2 = 9$,
$x - 1 = ±3$,
$x - 1 = 3$时,$x = 4$;$x - 1 = -3$时,$x = -2$,
所以方程的解为$x_1 = 4$,$x_2 = -2$,
故选:A.
解析:$(x - 1)^2 - 9 = 0$,
$(x - 1)^2 = 9$,
$x - 1 = ±3$,
$x - 1 = 3$时,$x = 4$;$x - 1 = -3$时,$x = -2$,
所以方程的解为$x_1 = 4$,$x_2 = -2$,
故选:A.
2. 用配方法解方程时,下列配方错误的是( )
A. $x^2 - 4x - 1 = 0$化为$(x - 2)^2 = 5$
B. $x^2 - 5x - 4 = 0$化为$\left(x - \frac{5}{2}\right)^2 = \frac{41}{4}$
C. $x^2 + 6x - 7 = 0$化为$(x + 3)^2 = 0$
D. $x^2 + 2x - 99 = 0$化为$(x + 1)^2 = 100$
A. $x^2 - 4x - 1 = 0$化为$(x - 2)^2 = 5$
B. $x^2 - 5x - 4 = 0$化为$\left(x - \frac{5}{2}\right)^2 = \frac{41}{4}$
C. $x^2 + 6x - 7 = 0$化为$(x + 3)^2 = 0$
D. $x^2 + 2x - 99 = 0$化为$(x + 1)^2 = 100$
答案:
C
解析:A、$x^2 - 4x - 1 = 0$,$x^2 - 4x = 1$,$x^2 - 4x + 4 = 1 + 4$,$(x - 2)^2 = 5$,正确;
B、$x^2 - 5x - 4 = 0$,$x^2 - 5x = 4$,$x^2 - 5x + \frac{25}{4}=4 + \frac{25}{4}$,$\left(x - \frac{5}{2}\right)^2 = \frac{41}{4}$,正确;
C、$x^2 + 6x - 7 = 0$,$x^2 + 6x = 7$,$x^2 + 6x + 9 = 7 + 9$,$(x + 3)^2 = 16$,错误;
D、$x^2 + 2x - 99 = 0$,$x^2 + 2x = 99$,$x^2 + 2x + 1 = 99 + 1$,$(x + 1)^2 = 100$,正确,
故选:C.
解析:A、$x^2 - 4x - 1 = 0$,$x^2 - 4x = 1$,$x^2 - 4x + 4 = 1 + 4$,$(x - 2)^2 = 5$,正确;
B、$x^2 - 5x - 4 = 0$,$x^2 - 5x = 4$,$x^2 - 5x + \frac{25}{4}=4 + \frac{25}{4}$,$\left(x - \frac{5}{2}\right)^2 = \frac{41}{4}$,正确;
C、$x^2 + 6x - 7 = 0$,$x^2 + 6x = 7$,$x^2 + 6x + 9 = 7 + 9$,$(x + 3)^2 = 16$,错误;
D、$x^2 + 2x - 99 = 0$,$x^2 + 2x = 99$,$x^2 + 2x + 1 = 99 + 1$,$(x + 1)^2 = 100$,正确,
故选:C.
3. [2022雅安]若关于x的一元二次方程$x^2 + 6x + c = 0$配方后得到方程$(x + 3)^2 = 2c$,则c的值为( )
A. -3
B. 0
C. 3
D. 9
A. -3
B. 0
C. 3
D. 9
答案:
C
解析:$x^2 + 6x + c = 0$,$x^2 + 6x = -c$,$x^2 + 6x + 9 = -c + 9$,$(x + 3)^2 = 9 - c$,
∵配方后得到方程$(x + 3)^2 = 2c$,
∴$9 - c = 2c$,解得$c = 3$,
故选:C.
解析:$x^2 + 6x + c = 0$,$x^2 + 6x = -c$,$x^2 + 6x + 9 = -c + 9$,$(x + 3)^2 = 9 - c$,
∵配方后得到方程$(x + 3)^2 = 2c$,
∴$9 - c = 2c$,解得$c = 3$,
故选:C.
4. 一元二次方程$x^2 - 4x - 8 = 0$的解是( )
A. $x_1 = -2 + 2\sqrt{3}$,$x_2 = -2 - 2\sqrt{3}$
B. $x_1 = 2 + 2\sqrt{3}$,$x_2 = 2 - 2\sqrt{3}$
C. $x_1 = 2 + 2\sqrt{2}$,$x_2 = 2 - 2\sqrt{2}$
D. $x_1 = 2\sqrt{3}$,$x_2 = -2\sqrt{3}$
A. $x_1 = -2 + 2\sqrt{3}$,$x_2 = -2 - 2\sqrt{3}$
B. $x_1 = 2 + 2\sqrt{3}$,$x_2 = 2 - 2\sqrt{3}$
C. $x_1 = 2 + 2\sqrt{2}$,$x_2 = 2 - 2\sqrt{2}$
D. $x_1 = 2\sqrt{3}$,$x_2 = -2\sqrt{3}$
答案:
B
解析:$x^2 - 4x - 8 = 0$,$x^2 - 4x = 8$,$x^2 - 4x + 4 = 8 + 4$,$(x - 2)^2 = 12$,
$x - 2 = ±2\sqrt{3}$,$x = 2 ± 2\sqrt{3}$,
即$x_1 = 2 + 2\sqrt{3}$,$x_2 = 2 - 2\sqrt{3}$,
故选:B.
解析:$x^2 - 4x - 8 = 0$,$x^2 - 4x = 8$,$x^2 - 4x + 4 = 8 + 4$,$(x - 2)^2 = 12$,
$x - 2 = ±2\sqrt{3}$,$x = 2 ± 2\sqrt{3}$,
即$x_1 = 2 + 2\sqrt{3}$,$x_2 = 2 - 2\sqrt{3}$,
故选:B.
5. 若一元二次方程$x^2 - 4x - b = 0$无解,则b的值可以取( )
A. -5
B. -4
C. -3
D. -2
A. -5
B. -4
C. -3
D. -2
答案:
A
解析:一元二次方程$x^2 - 4x - b = 0$的判别式$\Delta = (-4)^2 - 4×1×(-b) = 16 + 4b$,
方程无解,则$\Delta < 0$,即$16 + 4b < 0$,$b < -4$,
选项中只有$-5 < -4$,
故选:A.
解析:一元二次方程$x^2 - 4x - b = 0$的判别式$\Delta = (-4)^2 - 4×1×(-b) = 16 + 4b$,
方程无解,则$\Delta < 0$,即$16 + 4b < 0$,$b < -4$,
选项中只有$-5 < -4$,
故选:A.
6. (☆)如果一个三角形的两边长分别是方程$x^2 - 8x + 15 = 0$的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是( )
A. 5.5
B. 5
C. 4.5
D. 4
A. 5.5
B. 5
C. 4.5
D. 4
答案:
A
解析:解方程$x^2 - 8x + 15 = 0$,$(x - 3)(x - 5) = 0$,$x_1 = 3$,$x_2 = 5$,
设三角形第三边长为$c$,则$5 - 3 < c < 5 + 3$,即$2 < c < 8$,
原三角形周长范围是$3 + 5 + 2 <$周长$< 3 + 5 + 8$,即$10 <$周长$< 16$,
连接中点得到的三角形周长是原三角形周长的一半,所以范围是$5 <$新周长$< 8$,
选项中只有$5.5$在此范围内,
故选:A.
解析:解方程$x^2 - 8x + 15 = 0$,$(x - 3)(x - 5) = 0$,$x_1 = 3$,$x_2 = 5$,
设三角形第三边长为$c$,则$5 - 3 < c < 5 + 3$,即$2 < c < 8$,
原三角形周长范围是$3 + 5 + 2 <$周长$< 3 + 5 + 8$,即$10 <$周长$< 16$,
连接中点得到的三角形周长是原三角形周长的一半,所以范围是$5 <$新周长$< 8$,
选项中只有$5.5$在此范围内,
故选:A.
7. 填上适当的数,使下列等式成立:
(1)$x^2 + 12x +$______$=(x +$______$)^2$;
(2)$x^2 - 6x +$______$=(x -$______$)^2$;
(3)$x^2 -$______$x + \frac{1}{9}=(x -$______$)^2$;
(4)$x^2 + \frac{b}{a}x +$______$=(x +$______$)^2$.
(1)$x^2 + 12x +$______$=(x +$______$)^2$;
(2)$x^2 - 6x +$______$=(x -$______$)^2$;
(3)$x^2 -$______$x + \frac{1}{9}=(x -$______$)^2$;
(4)$x^2 + \frac{b}{a}x +$______$=(x +$______$)^2$.
答案:
(1)36;6
(2)9;3
(3)$\frac{2}{3}$;$\frac{1}{3}$
(4)$\frac{b^2}{4a^2}$;$\frac{b}{2a}$
解析:
(1)$x^2 + 12x + 36 = (x + 6)^2$;
(2)$x^2 - 6x + 9 = (x - 3)^2$;
(3)$x^2 - \frac{2}{3}x + \frac{1}{9} = \left(x - \frac{1}{3}\right)^2$;
(4)$x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} = \left(x + \frac{b}{2a}\right)^2$。
(1)36;6
(2)9;3
(3)$\frac{2}{3}$;$\frac{1}{3}$
(4)$\frac{b^2}{4a^2}$;$\frac{b}{2a}$
解析:
(1)$x^2 + 12x + 36 = (x + 6)^2$;
(2)$x^2 - 6x + 9 = (x - 3)^2$;
(3)$x^2 - \frac{2}{3}x + \frac{1}{9} = \left(x - \frac{1}{3}\right)^2$;
(4)$x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} = \left(x + \frac{b}{2a}\right)^2$。
8. 若一元二次方程$x^2 = a(a > 0)$的两个根分别是$m + 2$与$2m - 5$,则$m =$______,$a =$______.
答案:
1;9
解析:一元二次方程$x^2 = a(a > 0)$的两个根互为相反数,
所以$m + 2 + 2m - 5 = 0$,$3m - 3 = 0$,$m = 1$,
则一根为$1 + 2 = 3$,所以$a = 3^2 = 9$。
解析:一元二次方程$x^2 = a(a > 0)$的两个根互为相反数,
所以$m + 2 + 2m - 5 = 0$,$3m - 3 = 0$,$m = 1$,
则一根为$1 + 2 = 3$,所以$a = 3^2 = 9$。
9. 已知方程$x^2 + 4x + n = 0$可以配方成$(x + m)^2 = 3$,则$(n - m)^{2025} =$______.
答案:
-1
解析:$x^2 + 4x + n = 0$,$x^2 + 4x = -n$,$x^2 + 4x + 4 = -n + 4$,$(x + 2)^2 = 4 - n$,
因为配方成$(x + m)^2 = 3$,所以$m = 2$,$4 - n = 3$,$n = 1$,
$(n - m)^{2025} = (1 - 2)^{2025} = (-1)^{2025} = -1$。
解析:$x^2 + 4x + n = 0$,$x^2 + 4x = -n$,$x^2 + 4x + 4 = -n + 4$,$(x + 2)^2 = 4 - n$,
因为配方成$(x + m)^2 = 3$,所以$m = 2$,$4 - n = 3$,$n = 1$,
$(n - m)^{2025} = (1 - 2)^{2025} = (-1)^{2025} = -1$。
10.[教材变式]如图,在宽为20 m,长为30 m的矩形空地上,修筑同样宽的两条道路(图中阴影部分),余下的部分作为绿地,要使绿地的面积为375 m²,则路宽应为______m.
答案:
5
解析:设路宽为$x$m,
绿地面积可表示为$(30 - x)(20 - x) = 375$,
$600 - 50x + x^2 = 375$,$x^2 - 50x + 225 = 0$,$(x - 5)(x - 45) = 0$,
解得$x_1 = 5$,$x_2 = 45$(舍去),
所以路宽应为$5$m。
解析:设路宽为$x$m,
绿地面积可表示为$(30 - x)(20 - x) = 375$,
$600 - 50x + x^2 = 375$,$x^2 - 50x + 225 = 0$,$(x - 5)(x - 45) = 0$,
解得$x_1 = 5$,$x_2 = 45$(舍去),
所以路宽应为$5$m。
11.[新定义](1)给出一种运算:对于函数$y = x^n$,规定$y' = nx^{n - 1}$.例如:若函数$y = x^4$,则$y' = 4x^3$.已知函数$y = x^3$,则方程$y' = 12$的解是______.
(2)对于任意实数$a$,$b$,定义$f(a, b) = a^2 + 5a - b$,如$f(2, 3) = 2^2 + 5×2 - 3$.若$f(x, 2) = 4$,则实数$x$的值为______.
(2)对于任意实数$a$,$b$,定义$f(a, b) = a^2 + 5a - b$,如$f(2, 3) = 2^2 + 5×2 - 3$.若$f(x, 2) = 4$,则实数$x$的值为______.
答案:
(1)$x = ±2$
(2)$-6$或$1$
解析:
(1)函数$y = x^3$,则$y' = 3x^2$,
$3x^2 = 12$,$x^2 = 4$,$x = ±2$;
(2)$f(x, 2) = x^2 + 5x - 2 = 4$,$x^2 + 5x - 6 = 0$,$(x + 6)(x - 1) = 0$,
解得$x_1 = -6$,$x_2 = 1$。
(1)$x = ±2$
(2)$-6$或$1$
解析:
(1)函数$y = x^3$,则$y' = 3x^2$,
$3x^2 = 12$,$x^2 = 4$,$x = ±2$;
(2)$f(x, 2) = x^2 + 5x - 2 = 4$,$x^2 + 5x - 6 = 0$,$(x + 6)(x - 1) = 0$,
解得$x_1 = -6$,$x_2 = 1$。
查看更多完整答案,请扫码查看