1. 将下列整数尽可能多地表示成两个整数的积的形式:
(1) $ 9 = $
(2) $ 15 = $
(3) $ -12 = $
(4) $ -28 = $
(1) $ 9 = $
$1×9 = (-1)×(-9) = 3×3 = (-3)×(-3)$
;(2) $ 15 = $
$1×15 = (-1)×(-15) = 3×5 = (-3)×(-5)$
;(3) $ -12 = $
$1×(-12) = (-1)×12 = 2×(-6) = (-2)×6 = 3×(-4) = (-3)×4$
;(4) $ -28 = $
$1×(-28) = (-1)×28 = 2×(-14) = (-2)×14 = 4×(-7) = (-4)×7$
.
答案:
(1) $1×9 = (-1)×(-9) = 3×3 = (-3)×(-3)$
(2) $1×15 = (-1)×(-15) = 3×5 = (-3)×(-5)$
(3) $1×(-12) = (-1)×12 = 2×(-6) = (-2)×6 = 3×(-4) = (-3)×4$
(4) $1×(-28) = (-1)×28 = 2×(-14) = (-2)×14 = 4×(-7) = (-4)×7$
(1) $1×9 = (-1)×(-9) = 3×3 = (-3)×(-3)$
(2) $1×15 = (-1)×(-15) = 3×5 = (-3)×(-5)$
(3) $1×(-12) = (-1)×12 = 2×(-6) = (-2)×6 = 3×(-4) = (-3)×4$
(4) $1×(-28) = (-1)×28 = 2×(-14) = (-2)×14 = 4×(-7) = (-4)×7$
2. 因式分解:
(1) $ a^{2}+3a + 2 = $
(3) $ a^{2}+9a + 8 = $
(5) $ a^{2}-a - 2 = $
(7) $ a^{2}-2a - 8 = $
(1) $ a^{2}+3a + 2 = $
$(a + 1)(a + 2)$
; (2) $ a^{2}-3a + 2 = $$(a - 1)(a - 2)$
;(3) $ a^{2}+9a + 8 = $
$(a + 1)(a + 8)$
; (4) $ a^{2}-6a + 8 = $$(a - 2)(a - 4)$
;(5) $ a^{2}-a - 2 = $
$(a - 2)(a + 1)$
; (6) $ a^{2}+a - 2 = $$(a + 2)(a - 1)$
;(7) $ a^{2}-2a - 8 = $
$(a - 4)(a + 2)$
; (8) $ a^{2}+7a - 8 = $$(a + 8)(a - 1)$
.
答案:
(1) $(a + 1)(a + 2)$;
(2) $(a - 1)(a - 2)$;
(3) $(a + 1)(a + 8)$;
(4) $(a - 2)(a - 4)$;
(5) $(a - 2)(a + 1)$;
(6) $(a + 2)(a - 1)$;
(7) $(a - 4)(a + 2)$;
(8) $(a + 8)(a - 1)$;
(1) $(a + 1)(a + 2)$;
(2) $(a - 1)(a - 2)$;
(3) $(a + 1)(a + 8)$;
(4) $(a - 2)(a - 4)$;
(5) $(a - 2)(a + 1)$;
(6) $(a + 2)(a - 1)$;
(7) $(a - 4)(a + 2)$;
(8) $(a + 8)(a - 1)$;
3. 因式分解:
(1) $ a^{2}+8a + 15 $; (2) $ x^{2}-10x + 24 $;
(3) $ x^{2}-7x - 18 $; (4) $ a^{2}+14a - 32 $.
(1) $ a^{2}+8a + 15 $; (2) $ x^{2}-10x + 24 $;
(3) $ x^{2}-7x - 18 $; (4) $ a^{2}+14a - 32 $.
答案:
(1)
$a^{2}+8a + 15=(a + 3)(a + 5)$
(2)
$x^{2}-10x + 24=(x - 4)(x - 6)$
(3)
$x^{2}-7x - 18=(x - 9)(x+2)$
(4)
$a^{2}+14a - 32=(a + 16)(a - 2)$
(1)
$a^{2}+8a + 15=(a + 3)(a + 5)$
(2)
$x^{2}-10x + 24=(x - 4)(x - 6)$
(3)
$x^{2}-7x - 18=(x - 9)(x+2)$
(4)
$a^{2}+14a - 32=(a + 16)(a - 2)$
4. 因式分解:
(1) $ x^{2}+25xy + 150y^{2} $; (2) $ a^{2}-12ab + 20b^{2} $;
(3) $ 3a^{3}b^{2}-12a^{2}b^{2}+9ab^{2} $; (4) $ -2x^{3}y + 6x^{2}y^{2}+8xy^{3} $.
(1) $ x^{2}+25xy + 150y^{2} $; (2) $ a^{2}-12ab + 20b^{2} $;
(3) $ 3a^{3}b^{2}-12a^{2}b^{2}+9ab^{2} $; (4) $ -2x^{3}y + 6x^{2}y^{2}+8xy^{3} $.
答案:
(1)
$x^{2}+25xy + 150y^{2}$
$=(x + 10y)(x + 15y)$
(2)
$a^{2}-12ab + 20b^{2}$
$=(a - 2b)(a - 10b)$
(3)
$3a^{3}b^{2}-12a^{2}b^{2}+9ab^{2}$
$=3ab^{2}(a^{2}-4a + 3)$
$=3ab^{2}(a - 1)(a - 3)$
(4)
$-2x^{3}y + 6x^{2}y^{2}+8xy^{3}$
$=-2xy(x^{2}-3xy - 4y^{2})$
$=-2xy(x - 4y)(x + y)$
(1)
$x^{2}+25xy + 150y^{2}$
$=(x + 10y)(x + 15y)$
(2)
$a^{2}-12ab + 20b^{2}$
$=(a - 2b)(a - 10b)$
(3)
$3a^{3}b^{2}-12a^{2}b^{2}+9ab^{2}$
$=3ab^{2}(a^{2}-4a + 3)$
$=3ab^{2}(a - 1)(a - 3)$
(4)
$-2x^{3}y + 6x^{2}y^{2}+8xy^{3}$
$=-2xy(x^{2}-3xy - 4y^{2})$
$=-2xy(x - 4y)(x + y)$
查看更多完整答案,请扫码查看