4. 已知 $2a^{2}+9b^{2}-4a + 6b + 3 = 0$,求 $a^{7}b^{13}÷(-\frac{1}{3}a^{2}b^{3})^{3}$的值。
答案:
4.由$2a^{2}+9b^{2}-4a+6b+3=0$,得$2(a-1)^{2}+(3b+1)^{2}=0$,所以$a=1$且$b=-\frac{1}{3}$.从而$a^{7}b^{13}÷\left(-\frac{1}{3}a^{2}b^{3}\right)^{3}=-27ab^{4}=-\frac{1}{3}$.
1. 下列计算中,正确的是
① $(7a^{2}b^{3}c - ac) ÷ ac = 7ab^{3}$;
② $\left(x^{3}y^{2} - \dfrac{3}{2}x^{2}y^{3}\right) ÷ \left(-\dfrac{3}{2}x^{2}y^{2}\right) = -\dfrac{3}{2}x + y$;
③ $(12a^{3}b - 6a^{2}b^{2}) ÷ 6ab = 2a^{2}b - ab$;
④ $\left(4a^{2}b^{3} - \dfrac{1}{4}a^{3}b^{2}\right) ÷ \left(-\dfrac{1}{8}a^{2}b^{2}\right) = -32b + 2a$.
④
(填序号).① $(7a^{2}b^{3}c - ac) ÷ ac = 7ab^{3}$;
② $\left(x^{3}y^{2} - \dfrac{3}{2}x^{2}y^{3}\right) ÷ \left(-\dfrac{3}{2}x^{2}y^{2}\right) = -\dfrac{3}{2}x + y$;
③ $(12a^{3}b - 6a^{2}b^{2}) ÷ 6ab = 2a^{2}b - ab$;
④ $\left(4a^{2}b^{3} - \dfrac{1}{4}a^{3}b^{2}\right) ÷ \left(-\dfrac{1}{8}a^{2}b^{2}\right) = -32b + 2a$.
答案:
④.
查看更多完整答案,请扫码查看