5. 因式分解:
(1) $ x^{4}-13x^{2}+36 $; (2) $ x^{2}y^{2}-5xy - 14 $;
(3) $ (2x + 3)^{2}+8(2x + 3)-9 $.
(1) $ x^{4}-13x^{2}+36 $; (2) $ x^{2}y^{2}-5xy - 14 $;
(3) $ (2x + 3)^{2}+8(2x + 3)-9 $.
答案:
(1)
$\begin{aligned}x^{4}-13x^{2}+36 \\= (x^{2}-4)(x^{2}-9)\\=(x + 2)(x - 2)(x + 3)(x - 3)\end{aligned}$
(2)
$\begin{aligned}x^{2}y^{2}-5xy - 14\\=(xy - 7)(xy+2)\end{aligned}$
(3)
设$2x + 3 = a$,则
$\begin{aligned}(2x + 3)^{2}+8(2x + 3)-9\\=a^{2}+8a - 9\\=(a + 9)(a - 1)\\=(2x+3 + 9)(2x+3 - 1)\\=(2x + 12)(2x + 2)\\=4(x + 6)(x + 1)\end{aligned}$
(1)
$\begin{aligned}x^{4}-13x^{2}+36 \\= (x^{2}-4)(x^{2}-9)\\=(x + 2)(x - 2)(x + 3)(x - 3)\end{aligned}$
(2)
$\begin{aligned}x^{2}y^{2}-5xy - 14\\=(xy - 7)(xy+2)\end{aligned}$
(3)
设$2x + 3 = a$,则
$\begin{aligned}(2x + 3)^{2}+8(2x + 3)-9\\=a^{2}+8a - 9\\=(a + 9)(a - 1)\\=(2x+3 + 9)(2x+3 - 1)\\=(2x + 12)(2x + 2)\\=4(x + 6)(x + 1)\end{aligned}$
1. 因式分解:
(1) $2y + 3xy = $
(2) $2(a + 2) + 3b(a + 2) = $
(3) $2a + 4 + 3ab + 6b = $
(1) $2y + 3xy = $
y(2+3x)
;(2) $2(a + 2) + 3b(a + 2) = $
(a+2)(2+3b)
;(3) $2a + 4 + 3ab + 6b = $
(a+2)(2+3b)
。
答案:
(1)y(2+3x).(2)(a+2)(2+3b).(3)(a+2)(2+3b).
查看更多完整答案,请扫码查看