3. 已知 $4a^2 + b^2 + 2a - 2b + 1\dfrac{1}{4} = 0$,求 $a^2 + b^2$ 的值。
答案:
由$4a^{2}+b^{2}+2a-2b+1\frac{1}{4}=0$,得$\left(2a+\frac{1}{2}\right)^{2}+(b-1)^{2}=0$,所以$a=-\frac{1}{4}$且$b=1$,得$a^{2}+b^{2}=1\frac{1}{16}$.
1. 填空:
(1) $(x + 2)(2 - x) = $
(3) $(xy - \frac{4}{9})^2 = $
(1) $(x + 2)(2 - x) = $
$4-x^{2}$
; (2) $(2 - x)(-x + 2) = $$x^{2}-4x+4$
;(3) $(xy - \frac{4}{9})^2 = $
$x^{2}y^{2}-\frac{8}{9}xy+\frac{16}{81}$
; (4) $(-0.5 - a)^2 = $$0.25+a+a^{2}$
.
答案:
(1)$4-x^{2}$.(2)$x^{2}-4x+4$.(3)$x^{2}y^{2}-\frac{8}{9}xy+\frac{16}{81}$.(4)$0.25+a+a^{2}$.
2. 在横线上填适当的整式:
(1) $(\frac{1}{3} - x)$ (
(2) $(-\frac{3}{5} - y)$ (
(3) $(m^2 - 7)$ (
(4) $(-2t + \frac{2}{3})^2 = $
(1) $(\frac{1}{3} - x)$ (
$-x-\frac{1}{3}$
) $= x^2 - \frac{1}{9}$;(2) $(-\frac{3}{5} - y)$ (
$-\frac{3}{5}+y$
) $= \frac{9}{25} - y^2$;(3) $(m^2 - 7)$ (
$m^{2}-7$
) $= m^4 - 14m^2 + 49$;(4) $(-2t + \frac{2}{3})^2 = $
$4t^{2}-\frac{8}{3}t$
$+ \frac{4}{9}$.
答案:
(1)$-x-\frac{1}{3}$.(2)$-\frac{3}{5}+y$.(3)$m^{2}-7$.(4)$4t^{2}-\frac{8}{3}t$.
3. 若关于 $x$ 的整式 $4x^2 + mx + \frac{9}{4}$ 是某个整式的平方,则 $m$ 的值是
6或-6
.
答案:
6或-6.
4. 计算:
(1) $(3y - 2)(3y + 2)(9y^2 + 4)$; (2) $(a + 1)(a - 1)(a^2 - 1)$;
(3) $(x + 1)^2 - (x - 2)(x + 2)$; (4) $(x - 3)(x + 2) - 2(x + 3)^2$;
(5) $2(a + 1)^2 - 3(2a - 3)(2a + 3)$;
(6) $(x + \frac{1}{2})^2 + (x - \frac{1}{2})^2 + (x + \frac{1}{2})(x - \frac{1}{2})$;
(7) $(a - 2b - c)^2$; (8) $(a + 2b - 3)(a - 2b - 3)$;
(9) $(x^2 + x + 5)(x^2 - 5 - x)$; (10) $(2x - 3)^2(2x + 3)^2$.
(1) $(3y - 2)(3y + 2)(9y^2 + 4)$; (2) $(a + 1)(a - 1)(a^2 - 1)$;
(3) $(x + 1)^2 - (x - 2)(x + 2)$; (4) $(x - 3)(x + 2) - 2(x + 3)^2$;
(5) $2(a + 1)^2 - 3(2a - 3)(2a + 3)$;
(6) $(x + \frac{1}{2})^2 + (x - \frac{1}{2})^2 + (x + \frac{1}{2})(x - \frac{1}{2})$;
(7) $(a - 2b - c)^2$; (8) $(a + 2b - 3)(a - 2b - 3)$;
(9) $(x^2 + x + 5)(x^2 - 5 - x)$; (10) $(2x - 3)^2(2x + 3)^2$.
答案:
(1)$81y^{4}-16$.(2)$a^{4}-2a^{2}+1$.(3)$2x+5$.(4)$-x^{2}-13x-24$.(5)$-10a^{2}+4a+29$.(6)$3x^{2}+\frac{1}{4}$.(7)$a^{2}+4b^{2}+c^{2}-4ab-2ac+4bc$.(8)$a^{2}-6a+9-4b^{2}$.(9)$x^{4}-x^{2}-10x-25$.(10)$16x^{4}-72x^{2}+81$.
查看更多完整答案,请扫码查看