2024年能力素养与学力提升九年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2024年能力素养与学力提升九年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2024年能力素养与学力提升九年级数学上册人教版》

1. 确定一个圆的条件是______和______.
答案:
2. 已知$\odot O$中最长的弦为$16\mathrm{cm}$,则$\odot O$的半径为______$\mathrm{cm}$.
答案:
3. 过除圆心外的圆内一点可以作出圆的最长弦______条.
答案:
4. 以已知点$O$为圆心,已知线段$a$为半径作圆,可以作( )

A.$1$个
B.$2$个
C.$3$个
D.无数个
答案:
1. 下列说法中错误的是( )

A.半圆是弧
B.半径相等的圆是等圆
C.过圆心的线段是直径
D.弓形是弦及弦所对的弧组成的图形
答案:
2. 下列命题中是真命题的有( )
① 两个端点能够重合的弧是等弧;② 圆的任意一条弦把圆分成优弧和劣弧两部分;③ 长度相等的弧是等弧;④ 半径相等的圆是等圆;⑤ 直径是圆内最长的弦;⑥ 半圆所对的弦是直径.

A.$3$个
B.$4$个
C.$5$个
D.$6$个
答案:
3. 在以$AB = 8\mathrm{cm}$为直径的圆上,到$AB$的距离为$4\mathrm{cm}$的点有( )

A.无数个
B.$1$个
C.$2$个
D.$4$个
答案:
4. 如图,在$\mathrm{Rt}\triangle ABC$中,若$\angle C = 90^{\circ}$,$AB = 10$. 以点$C$为圆心,$CB$长为半径的圆恰好经过$AB$的中点$D$,则$AC$的长为( )

A.$5\sqrt{3}$
B.$5$
C.$5\sqrt{2}$
D.$6$
答案:
5. 若$\odot O$所在平面内有一点$P$,这一点$P$到$\odot O$上的点的最大距离为$a$,最小距离为$b(a > b)$,则此圆的半径为( )

A.$\frac{a + b}{2}$
B.$\frac{a - b}{2}$
C.$\frac{a + b}{2}$或$\frac{a - b}{2}$
D.$a + b$或$a - b$
答案:
6. 如图,$CD$是$\odot O$的直径,$E$为$\odot O$上一点,$\angle EOD = 48^{\circ}$,$A$为$DC$延长线上一点,$AE$交$\odot O$于点$B$,且$AB = OC$,求$\angle A$的度数.
答案:
7. 如图,$A$,$B$,$C$为$\odot O$上的三点,$\angle OBA = 50^{\circ}$,$\angle OBC = 60^{\circ}$,求$\angle OAC$的度数.
答案:
1. 圆上任意两点间的部分叫做______,连接圆上任意两点的线段叫做______,经过圆心的______叫做直径.
答案:
2. 已知$AB$是$\odot O$的直径,$CD$为$\odot O$的非直径的弦,$CD$交$OA$于点$E$,则圆中共有弦______条,劣弧______条,分别是______.
答案:
3. 若$P$是$\odot O$内一点,则过点$P$的弦有______条,其中最长的弦是______.
答案:
4. 若两个同心圆的直径分别是为$5\mathrm{cm}$和$3\mathrm{cm}$,则圆环部分的宽度为______$\mathrm{cm}$.
答案:
5. 一点到圆周上点的最大距离为$9$,最短距离为$1$,若这点在圆内,则圆的直径为______;若这点在圆外,则圆的直径是______.
答案:
6. 如图,$AB$是$\odot O$的弦,$\odot O$的半径$OC$,$OD$与$AB$分别相交于点$M$,$N$,已知$\angle OMN = \angle ONM$. 求证:$CM = DN$.
答案:
7. 如图,以点$O$为圆心的同心圆中,大圆的弦$AB$分别交小圆于$C$,$D$两点.
(1)求证:$\angle AOC = \angle BOD$;
(2)求证:$AC = BD$.
答案:
8. 如图,直线$l$经过$\odot O$的圆心$O$,且与$\odot O$交于$A$,$B$两点,点$C$在$\odot O$上,且$\angle AOC = 30^{\circ}$,$P$是直线$l$上的一个动点(与圆心$O$不重合),直线$CP$与$\odot O$相交于点$Q$,则是否存在点$P$,使得$QP = QO$?若存在,求出相应的$\angle OCP$的度数;若不存在,请简要说明理由.
答案:

查看更多完整答案,请扫码查看

关闭