17. (8分)如图,点$B,F,C,E$在同一条直线上,$AB // DE,\angle A = \angle D,BF = EC$.求证:$AC // DF$.

答案:
17.证明:$\because AB// DE,\therefore \angle B = \angle E$.
$\because BF = EC,\therefore BF + FC = EC + FC$,即$BC = EF$.
在$\triangle ABC$和$\triangle DEF$中,$\begin{cases} \angle A = \angle D,\\ \angle B = \angle E,\\ BC = EF,\end{cases}$
$\therefore \triangle ABC \cong \triangle DEF(AAS)$.
$\therefore \angle ACB = \angle DFE.\therefore AC// DF$.
$\because BF = EC,\therefore BF + FC = EC + FC$,即$BC = EF$.
在$\triangle ABC$和$\triangle DEF$中,$\begin{cases} \angle A = \angle D,\\ \angle B = \angle E,\\ BC = EF,\end{cases}$
$\therefore \triangle ABC \cong \triangle DEF(AAS)$.
$\therefore \angle ACB = \angle DFE.\therefore AC// DF$.
18. (8分)某校篮球社团人数迅速增加,急需购进$A,B$两种品牌篮球,已知$A$品牌篮球单价比$B$品牌篮球单价的2倍少48元,采购相同数量的$A,B$两种品牌篮球分别需要花费9 600元和7 200元.$A,B$两种品牌篮球的单价分别是多少?
答案:
18.解:设B品牌篮球的单价是$x$元,则A品牌篮球的单价是$(2x - 48)$元.
根据题意,得$\frac{9600}{2x - 48} = \frac{7200}{x}$.
方程两边乘$x(2x - 48)$,
得$9600x = 7200(2x - 48)$.解得$x = 72$.
检验:当$x = 72$时,$x(2x - 48) \neq 0$.
$\therefore$原分式方程的解是$x = 72$,$2x - 48 = 96$.
答:A品牌篮球的单价是96元,B品牌篮球的单价是72元.
根据题意,得$\frac{9600}{2x - 48} = \frac{7200}{x}$.
方程两边乘$x(2x - 48)$,
得$9600x = 7200(2x - 48)$.解得$x = 72$.
检验:当$x = 72$时,$x(2x - 48) \neq 0$.
$\therefore$原分式方程的解是$x = 72$,$2x - 48 = 96$.
答:A品牌篮球的单价是96元,B品牌篮球的单价是72元.
查看更多完整答案,请扫码查看