22. (12分)如图,在△ABC中,AB = AC,点D是直线BC上一点,以AD为边在AD的右侧作△ADE,使AE = AD,且∠DAE = ∠BAC,连接CE.
(1)当点D在BC的延长线上移动时,若∠BAC = 25°,则∠DCE的度数是
(2)设∠BAC = $\alpha$,∠DCE = $\beta$.
①当点D在BC的延长线上移动时,猜想$\alpha$与$\beta$之间的数量关系,并说明理由.
②当点D在直线BC上移动时(不与B,C两点重合),猜想$\alpha$与$\beta$之间的数量关系,并直接写出你的结论.


(1)当点D在BC的延长线上移动时,若∠BAC = 25°,则∠DCE的度数是
$25^{\circ}$
.(2)设∠BAC = $\alpha$,∠DCE = $\beta$.
①当点D在BC的延长线上移动时,猜想$\alpha$与$\beta$之间的数量关系,并说明理由.
②当点D在直线BC上移动时(不与B,C两点重合),猜想$\alpha$与$\beta$之间的数量关系,并直接写出你的结论.
答案:
22.
(1)$25^{\circ}$
(2)①$\alpha = \beta$.
理由:$\because \angle BAC = \angle DAE$,
$\therefore \angle BAC + \angle CAD = \angle DAE + \angle CAD$,
即$\angle BAD = \angle CAE$.
在$\triangle BAD$和$\triangle CAE$中,$\begin{cases} AB = AC, \\ \angle BAD = \angle CAE, \\ AD = AE, \end{cases}$
$\therefore \triangle BAD \cong \triangle CAE (SAS)$.$\therefore \angle ABD = \angle ACE$.
$\because \angle ACD = \angle ABD + \angle BAC = \angle ACE + \angle DCE$,
$\therefore \angle BAC = \angle DCE$.
$\because \angle BAC = \alpha$,$\angle DCE = \beta$,$\therefore \alpha = \beta$.
②$\alpha = \beta$或$\alpha + \beta = 180^{\circ}$ [解析]如图1,当点D在线段BC上时,$\alpha + \beta = 180^{\circ}$;如图2,图3,当点D在线段BC的延长线或反向延长线上时,$\alpha = \beta$.

22.
(1)$25^{\circ}$
(2)①$\alpha = \beta$.
理由:$\because \angle BAC = \angle DAE$,
$\therefore \angle BAC + \angle CAD = \angle DAE + \angle CAD$,
即$\angle BAD = \angle CAE$.
在$\triangle BAD$和$\triangle CAE$中,$\begin{cases} AB = AC, \\ \angle BAD = \angle CAE, \\ AD = AE, \end{cases}$
$\therefore \triangle BAD \cong \triangle CAE (SAS)$.$\therefore \angle ABD = \angle ACE$.
$\because \angle ACD = \angle ABD + \angle BAC = \angle ACE + \angle DCE$,
$\therefore \angle BAC = \angle DCE$.
$\because \angle BAC = \alpha$,$\angle DCE = \beta$,$\therefore \alpha = \beta$.
②$\alpha = \beta$或$\alpha + \beta = 180^{\circ}$ [解析]如图1,当点D在线段BC上时,$\alpha + \beta = 180^{\circ}$;如图2,图3,当点D在线段BC的延长线或反向延长线上时,$\alpha = \beta$.
查看更多完整答案,请扫码查看