18.(10分)在如图所示的正方形网格中,每个小正方形的边长都为$1$,$\bigtriangleup ABC$的顶点都在网格线的交点上,点$B$关于$y$轴的对称点的坐标为$(2,0)$,点$C$关于$x$轴的对称点的坐标为$(-1,-2)$.
(1)根据上述条件,在网格中建立平面直角坐标系.
(2)画出$\bigtriangleup ABC$关于$y$轴对称的图形$\bigtriangleup A_{1}B_{1}C_{1}$.
(3)直接写出点$A$关于$x$轴的对称点的坐标.

(1)根据上述条件,在网格中建立平面直角坐标系.
(2)画出$\bigtriangleup ABC$关于$y$轴对称的图形$\bigtriangleup A_{1}B_{1}C_{1}$.
(3)直接写出点$A$关于$x$轴的对称点的坐标.
答案:
18.
(1)如图,平面直角坐标系$xOy$即为所求.
(2)如图,$\triangle A_1B_1C_1$即为所求.
(3)点$A$关于$x$轴的对称点的坐标为$(-4,-4)$.
18.
(1)如图,平面直角坐标系$xOy$即为所求.
(2)如图,$\triangle A_1B_1C_1$即为所求.
(3)点$A$关于$x$轴的对称点的坐标为$(-4,-4)$.
19.(8分)如图,在$\bigtriangleup ABC$中,$AC = BC$,$\angle C = 90^{\circ}$.
(1)尺规作图:在$BC$边上确定一点$D$,使点$D$到$AC$和$AB$的距离相等.(保留作图痕迹,不写作法)
(2)猜想$AB$,$AC$,$CD$之间的数量关系,并证明.

(1)尺规作图:在$BC$边上确定一点$D$,使点$D$到$AC$和$AB$的距离相等.(保留作图痕迹,不写作法)
(2)猜想$AB$,$AC$,$CD$之间的数量关系,并证明.
答案:
19.解:
(1)如图1,点$D$即为所求.
(2)$AB=AC+CD$. 理由:如图2,过点$D$作$DE\perp AB$于点$E$. $\because \angle C=90^{\circ},\therefore DC\perp AC$. $\because AD$平分$\angle CAB,DE\perp AB,\therefore DC=DE$. 在$Rt\triangle ADC$和$Rt\triangle ADE$中,$\begin{cases}AD=AD,\\DC=DE,\end{cases}$ $\therefore Rt\triangle ADC\cong Rt\triangle ADE(HL).\therefore AC=AE$. $\because AC=BC,\angle C=90^{\circ},\therefore \angle B=\angle BAC=45^{\circ}$. $\because DE\perp AB,\therefore \angle B=\angle BDE=45^{\circ}.\therefore BE=DE$. $\therefore CD=DE=BE.\therefore AB=AE+BE=AC+CD$.
19.解:
(1)如图1,点$D$即为所求.
(2)$AB=AC+CD$. 理由:如图2,过点$D$作$DE\perp AB$于点$E$. $\because \angle C=90^{\circ},\therefore DC\perp AC$. $\because AD$平分$\angle CAB,DE\perp AB,\therefore DC=DE$. 在$Rt\triangle ADC$和$Rt\triangle ADE$中,$\begin{cases}AD=AD,\\DC=DE,\end{cases}$ $\therefore Rt\triangle ADC\cong Rt\triangle ADE(HL).\therefore AC=AE$. $\because AC=BC,\angle C=90^{\circ},\therefore \angle B=\angle BAC=45^{\circ}$. $\because DE\perp AB,\therefore \angle B=\angle BDE=45^{\circ}.\therefore BE=DE$. $\therefore CD=DE=BE.\therefore AB=AE+BE=AC+CD$.
查看更多完整答案,请扫码查看