20. (8分)如图,在△ABC中,AD⊥BC,且AD = BD,点E是线段AD上一点,且BE = AC.
(1)求证:△ACD≌△BED.
(2)若∠C = 78°,求∠ABE的度数.

(1)求证:△ACD≌△BED.
(2)若∠C = 78°,求∠ABE的度数.
答案:
20.
(1)证明:$\because AD \perp BC$,$\therefore \angle ADC = \angle BDE = 90^{\circ}$.
在$Rt \triangle ACD$和$Rt \triangle BED$中,$\begin{cases} AC = BE, \\ AD = BD, \end{cases}$
$\therefore Rt \triangle ACD \cong Rt \triangle BED (HL)$.
(2)解:由
(1)得,$\triangle ACD \cong \triangle BED$,$\therefore \angle DAC = \angle DBE$.
$\because \angle C = 78^{\circ}$,$\therefore \angle DBE = \angle DAC = 90^{\circ} - \angle C = 12^{\circ}$.
$\because AD = BD$,$AD \perp BC$,
$\therefore \triangle ABD$是等腰直角三角形.$\therefore \angle ABD = 45^{\circ}$.
$\therefore \angle ABE = \angle ABD - \angle DBE = 45^{\circ} - 12^{\circ} = 33^{\circ}$.
(1)证明:$\because AD \perp BC$,$\therefore \angle ADC = \angle BDE = 90^{\circ}$.
在$Rt \triangle ACD$和$Rt \triangle BED$中,$\begin{cases} AC = BE, \\ AD = BD, \end{cases}$
$\therefore Rt \triangle ACD \cong Rt \triangle BED (HL)$.
(2)解:由
(1)得,$\triangle ACD \cong \triangle BED$,$\therefore \angle DAC = \angle DBE$.
$\because \angle C = 78^{\circ}$,$\therefore \angle DBE = \angle DAC = 90^{\circ} - \angle C = 12^{\circ}$.
$\because AD = BD$,$AD \perp BC$,
$\therefore \triangle ABD$是等腰直角三角形.$\therefore \angle ABD = 45^{\circ}$.
$\therefore \angle ABE = \angle ABD - \angle DBE = 45^{\circ} - 12^{\circ} = 33^{\circ}$.
查看更多完整答案,请扫码查看