18. (8 分)已知代数式$A = 4(a^2b - ab^2) - 2(ab^2 - a^2b)$.
(1)化简$A$.
(2)若$a - b = 2,ab = 3$,求$A$的值.
(1)化简$A$.
(2)若$a - b = 2,ab = 3$,求$A$的值.
答案:
18.解:
(1)A = 4a²b - 4ab² - 2ab² + 2a²b = 6a²b - 6ab².
(2)当a - b = 2,ab = 3时,A = 6ab(a - b)=6×3×2 = 36.
(1)A = 4a²b - 4ab² - 2ab² + 2a²b = 6a²b - 6ab².
(2)当a - b = 2,ab = 3时,A = 6ab(a - b)=6×3×2 = 36.
19. (8 分)已知$a,b,c$为$\triangle ABC$的三条边,
(1)若$a = 5,b = 6,\triangle ABC$的周长是小于 17 的奇数,求$c$的长.
(2)若$\triangle ABC$为等腰三角形,且满足$a^2 + b^2 - 4a - 6b + 13 = 0$,求$\triangle ABC$的周长.
(1)若$a = 5,b = 6,\triangle ABC$的周长是小于 17 的奇数,求$c$的长.
(2)若$\triangle ABC$为等腰三角形,且满足$a^2 + b^2 - 4a - 6b + 13 = 0$,求$\triangle ABC$的周长.
答案:
19.解:
(1)
∵a,b,c为△ABC的三条边,
∴b - a < c < b + a.
∵a = 5,b = 6,
∴1 < c < 11.
∵△ABC的周长是小于17的奇数,
∴a + b + c < 17.
∴5 + 6 + c < 17.
∴c < 6.
∴1 < c < 6,且c是偶数.
∴c = 2或4.
(2)
∵a² + b² - 4a - 6b + 13 = 0,
∴a² - 4a + 4 + b² - 6b + 9 = 0.
∴(a - 2)² + (b - 3)² = 0.
∵(a - 2)²≥0,(b - 3)²≥0,
∴(a - 2)² = (b - 3)² = 0.
∴a - 2 = 0,b - 3 = 0.
∴a = 2,b = 3.
I.当腰长为2时,△ABC的三边长分别为2,2,3.
∴周长 = 2 + 2 + 3 = 7.
II.当腰长为3时,△ABC的三边长分别为2,3,3.
∴周长 = 2 + 3 + 3 = 8.
综上所述,△ABC的周长为7或8.
(1)
∵a,b,c为△ABC的三条边,
∴b - a < c < b + a.
∵a = 5,b = 6,
∴1 < c < 11.
∵△ABC的周长是小于17的奇数,
∴a + b + c < 17.
∴5 + 6 + c < 17.
∴c < 6.
∴1 < c < 6,且c是偶数.
∴c = 2或4.
(2)
∵a² + b² - 4a - 6b + 13 = 0,
∴a² - 4a + 4 + b² - 6b + 9 = 0.
∴(a - 2)² + (b - 3)² = 0.
∵(a - 2)²≥0,(b - 3)²≥0,
∴(a - 2)² = (b - 3)² = 0.
∴a - 2 = 0,b - 3 = 0.
∴a = 2,b = 3.
I.当腰长为2时,△ABC的三边长分别为2,2,3.
∴周长 = 2 + 2 + 3 = 7.
II.当腰长为3时,△ABC的三边长分别为2,3,3.
∴周长 = 2 + 3 + 3 = 8.
综上所述,△ABC的周长为7或8.
20. (12 分)阅读材料:在因式分解中,把多项式中某些部分看成一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,还能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.
例如:分解因式:$(x + y)^2 + 2(x + y) + 1$.
解:将“$x + y$”看成整体,令$x + y = A$,则原式$= A^2 + 2A + 1 = (A + 1)^2$.
将$A$换元,得原式$= (x + y + 1)^2$.
请你运用“换元法”对下列多项式进行因式分解:
(1)$(x^2 - 4x)(x^2 - 4x + 8) + 16$.
(2)$(a^2 + a)(a^2 + a + 2) + (a^2 + a + 1)(a^2 + a - 1) + 1$.
例如:分解因式:$(x + y)^2 + 2(x + y) + 1$.
解:将“$x + y$”看成整体,令$x + y = A$,则原式$= A^2 + 2A + 1 = (A + 1)^2$.
将$A$换元,得原式$= (x + y + 1)^2$.
请你运用“换元法”对下列多项式进行因式分解:
(1)$(x^2 - 4x)(x^2 - 4x + 8) + 16$.
(2)$(a^2 + a)(a^2 + a + 2) + (a^2 + a + 1)(a^2 + a - 1) + 1$.
答案:
20.解:
(1)设x² - 4x = t,则原式 = t(t + 8) + 16 = t² + 8t + 16 = (t + 4)².
将t换元,得原式$ = (x² - 4x + 4)² = (x - 2)^4.$
(2)设a² + a = t,则原式 = t(t + 2) + (t + 1)(t - 1) + 1 = t² + 2t + t² - 1 + 1 = 2t(t + 1).将t换元,得原式 = 2(a² + a)(a² + a + 1) = 2a(a + 1)(a² + a + 1).
(1)设x² - 4x = t,则原式 = t(t + 8) + 16 = t² + 8t + 16 = (t + 4)².
将t换元,得原式$ = (x² - 4x + 4)² = (x - 2)^4.$
(2)设a² + a = t,则原式 = t(t + 2) + (t + 1)(t - 1) + 1 = t² + 2t + t² - 1 + 1 = 2t(t + 1).将t换元,得原式 = 2(a² + a)(a² + a + 1) = 2a(a + 1)(a² + a + 1).
查看更多完整答案,请扫码查看